论文部分内容阅读
小型化、集成化和便携化成为当代工业的主导方向,高度微型化和集成化的电子设备往往会在其微尺度内部元件区域内释放大量的热量,可能导致设备的功能失效,因此亟需发展有效手段来提高设备的换热能力。本文的核心思想是引入非牛顿流体在微通道内所表现出的独特流动特性以增强微尺度换热能力,通过选取适合于微尺度流动的典型非牛顿流体作为工作介质,并耦合其它方法例如复杂通道结构、脉动流和声表面波等励起非牛顿流体独特的流动性质,基于此研究了非牛顿流体和其他方法耦合时对微尺度换热效果的影响及其机理。基于主被动相结合的强化换热思想,本文研究了四种不同类型的强化传热方式,具体如下:首先,基于被动强化换热思想,本文实验研究了蛇形微通道内两种典型非牛顿流体的流动传热特性及其机理。实验中牛顿流体为蔗糖溶液,两种典型非牛顿流体为粘弹性流体(聚氧化乙烯PEO溶液)和假塑性流体(羧甲基纤维素纳CMC溶液)。实验结果表明:在维森贝格数Wi=2.4~53.69范围内,粘弹性流体PEO溶液的摩擦阻力系数较CMC溶液和蔗糖溶液显著增加;在相同的格雷兹数(Gz)下,Nusselt数(Nu)较牛顿流体具有显著的增加,表现出了明显的强化传热效果。通过压降特性分析,粘弹性流体强化传热的主要机理为在大Wi下粘弹性流体在蛇形微通道内产生了弹性不稳定和弹性湍流流态,该混沌流态促进了换热强化。随后,通过数值模拟分析了复杂微通道内非牛顿流体流动换热特性和机理。微通道热沉选用歧管式微通道(MMC)和传统微通道(TMC),非牛顿流体选用幂律流体。数值模拟结果表明:与牛顿流体流动相比,假塑性流体的剪切稀变特性诱发歧管式微通道内的流动产生二次流,从而显著提高传热效率并改善热沉温度分布的均匀性。其次,基于主动强化换热思想,数值模拟研究了脉动流对歧管式微通道热沉中的流动换热特性的影响。脉动流分别选用了随时间呈方波、正弦波和半正弦波式变化的流动。结果表明:与稳态流动相比,入口脉动流动能显著提高通道的整体换热性能;在三种脉动入口条件中,正弦波脉动流动的换热性能最优。通过流场分析发现,脉动流的引入使得流动一直处于未发展流态,促进了通道内二次流或反向流的生成,从而提高了微通道传热性能。最后,为了进一步探索简单通道强化传热技术,数值模拟研究了声表面波驻波(SSAW)对矩形微通道热沉换热特性的影响和机理。结果表明:引入声表面波驻波能极大提高矩形微通道的整体传热性能。声表面波参数对矩形微通道换热性能的影响主要归因于单位面积内输入的声表面波波能,即通道面积越小或施加完整的声表面波驻波个数越多(波长越小)。声表面波强化换热的机理在于声涡流的出现和声流引起的热边界层的破坏。当引入假塑性流体,其剪切稀变特性使流体的粘度在声涡流产生后逐渐减小,流动的阻力也随之减小。在声表面波能量相同的情况下,假塑性流体工况中的声涡流可以获得更高的流速,以及更高的对流换热效率。综上,本文对典型非牛顿流体在微通道内传热特性及其耦合脉动入口流动和声表面波对传热过程影响的规律开展了一系列研究,探讨了不同类型强化换热方式的机理。本文探索适合于微型化设备的高效换热方法,为今后非牛顿流体强化换热在实际工程中的应用奠定基础和具有指导性意义。