面向动态场景的移动毫米波覆盖增强技术研究

来源 :北京邮电大学 | 被引量 : 0次 | 上传用户:q999666
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
毫米波(Millimeter wave,mm Wave)凭借其丰富的频谱资源已经成为第五代移动通信系统的关键技术之一,并且将保持持续发展和演进的趋势。然而,高频段的mmWave(30GHz-300GHz)信号传输面临严重的路径和穿透损耗,这为mmWave系统的实际部署和应用带来了巨大挑战。首先,为了补偿mmWave的传输损耗,收发端通常采用大规模天线阵列实现方向性波束赋形,但一方面,窄波束传输性能很大程度上依赖于收发端波束的准确对准,而在动态场景下,终端的移动性不仅加剧了波束对准的难度,也导致无线通信系统难以实时进行动态的信道状态信息(Channel state information,CSI)获取和网络性能的优化;另一方面,窄波束传输严重限制mmWave网络的用户覆盖能力,只有位于主瓣波宽之内的用户才能享受高速率的通信服务。其次,由于巨大的穿透损耗,遮挡问题是目前限制毫米波系统覆盖能力的主要瓶颈之一,为此,智能反射面(Intelligent reflecting surface,IRS)技术被引入到毫米波系统的设计和优化中,以进一步实现mmWave系统的盲点覆盖增强。当前国内外针对mmWave通信技术的研究主要集中在准静态场景下的波束管理、波束赋形以及信道估计等领域,而对动态场景下的覆盖增强问题鲜有讨论,而mm Wave网络的覆盖增强问题是限制网络部署的现实问题之一。因此,本文针对面向动态场景的移动毫米波覆盖增强技术进行了如下研究:(1)当前毫米波系统普遍采用的基于正交多址接入的窄波束传输技术严重限制了 mmWave系统的用户覆盖能力,本文率先提出了一种基于机器学习(Machine learning,ML)的mmWave-非正交多址接入(Non-orthogonal multiple access,NOMA)技术以提升动态场景下mmWave网络的用户覆盖。本文利用了 ML方法实现了 mmWave-NOMA网络的性能优化,其中,本文提出了一种基于高斯过程机器助实现高效的波束追踪;然后,本文利用角度域信息,进一步提出了一种基于无监督学习方法的用户分组方法;最后,本文讨论了移动mmWave-NOMA场景下三维波束宽度控制问题,并利用深度学习方法实现了实时的波束宽度优化。(2)IRS是实现未来动态mmWave的盲点覆盖增强的关键技术之一,但IRS的引入使mmWave网络架构高度复杂化,因此,为了充分发挥IRS在移动mmWave系统中的性能潜力,本文对IRS辅助mmWave网络的动态波束管理、级联信道估计及波束赋形等关键问题进行了深入研宄。具体而言,本文分别从传统波束空间搜索和ML辅助两个角度讨论了mmWave-IRS网络的波束管理问题,并基于用户位置信息,提出了一种位置信息辅助的高效波束赋形方法;然后,本文提出了一种自适应网格匹配追踪算法,实现了高分辨率的级联信道估计。最后,本文对整体的研究内容进行了总结,并对动态场景下的毫米波覆盖增强技术的后续研究问题进行了展望。
其他文献
独柱墩桥梁施工技术因施工过程中的占地面积较小、成本相对较低而被广泛应用.为防范桥梁垮塌事故的发生,对独柱墩桥梁的施工技术进行分析,并对加固桥梁的具体措施进行探讨,供同类工程参考.
以某高速公路桥梁技术改造工程为例,在顶升技术比选及施工方案拟定的基础上,对该桥梁工程计算机PLC控制交替及随动装置组合顶升施工过程进行分析探讨.结果表明,本工程所采用的顶升施工技术工效高、安全储备大,虽然施工设备投入多,但能实现施工设备资源集约机动配置,并能在不中断交通运行的情况下快速完成运营路面结构层补强施工.