论文部分内容阅读
近年来,随着航空航天科技的发展,新型飞行器的研究正成为一股热潮。其中,高超声速飞行器、可重复使用运载器和垂直起降飞行器由于具有重要的军事和民用价值,受到世界各国的广泛关注。研究表明,以上三种新型飞行器均可能表现出非最小相位特性,模型中的不稳定零动态阻碍了传统控制方法的使用,是设计飞行控制系统时最具挑战性的难点问题。本文围绕这一课题,以保障飞行安全为目的,通过发展非最小相位系统控制新理论新方法,解决具有非最小相位特性的新型飞行器稳定控制和精确跟踪控制问题。本文的主要工作包括:(1)针对高超声速飞行器,提出基于扩展回路反步的稳定控制方法。在对模型结构分析的基础上,指出了通过反步法设计稳定控制器的原则,即采用扩展回路反步。通过对控制回路进行扩展使内部状态包含在内,使得实现输出跟踪的同时也能保证内部状态稳定,在此基础上设计了自适应反步控制器。该方法具有较好的跟踪精度和较强的鲁棒性,为弱非最小相位系统的稳定控制提供了新思路。(2)针对高超声速飞行器,提出基于输出重定义-动态逆的稳定控制方法。首先通过输出重定义得到稳定的零动态,提出三种最小相位新输出设计方法,包括内部状态作为输出、静态合成输出以及带有积分的合成输出,然后对新输出采用动态逆得到稳定的控制器。该方法可以在鲁棒性和控制性能之间取得较好的平衡,为一般非最小相位系统的稳定控制提供了系统性的方法。(3)针对欠驱动可重复使用运载器,提出基于最优有界逆的精确跟踪控制方法。首先通过输出重定义得到稳定的零动态,然后通过最优有界逆得到精确跟踪所需的理想内动态,最后通过反步法为对新输出设计跟踪控制器,并通过反馈误差限幅防止输入饱和,成功实现了欠驱动可重复使用运载器的精确跟踪控制。(4)针对带有不确定参数的垂直起降飞行器,提出基于经验回放的精确跟踪控制方法。首先采用经验回放技术对模型中的不确定参数进行辨识,然后根据辨识的参数利用最优有界逆方法求解理想内动态,并嵌入跟踪控制器中以实现精确跟踪。该方法有效解决了不确定非最小相位系统的精确跟踪控制问题。(5)针对最小相位系统和非最小相位系统,提出通用跟踪控制器的概念并应用于高超声速飞行器。通用跟踪控制器是PID控制在状态空间模型上的扩展,揭示了PID控制与其他控制方法之间的联系,为PID控制提供了新的理解,并且体现了非最小相位系统的性能限制。