论文部分内容阅读
本研究通过三个阶段试验对设施菜田N2O、CO2排放进行了深入探究,首先观测了设施菜田棚室内部N2O、CO2浓度的空间分布特征,并同步以静态箱法观测土壤N2O通量特征,对比二者,分析设施菜田棚室最终N2O、CO2排放与土壤排放之间关系。第二阶段为尝试引入反演式气体扩散模型直接观测设施菜田排入大气的N2O、CO2气体,但由于模型功能所限,仅成功完成了N2O的观测。第三阶段同步使用反演式气体扩散模型和静态箱/气相色谱法观测设施菜田N2O通量特征,对比观测结果,分析造成差异的各项因素,验证了新方法的可行性。本研究最终结论如下:(1)设施菜田静态箱法最佳采气时间为9:00-12:00,但N2O通量结果可能存在14%-67%的误差,CO2通量结果可能存在6%-17%的误差,因此设施菜田每日单次观测可能不足以均衡全天N2O排放的时间差异性。(2)棚室内不同高度N2O浓度特征规律较为一致,与静态箱法测得土壤N2O通量特征吻合,N2O浓度随高度增加呈下降趋势,均高于外界背景浓度,表明棚室对N2O气体具有一定滞留作用(3)在短期高频观测中,土壤N2O通量特征与棚内N2O浓度分布特征规律一致;土壤CO2通量特征与棚内CO2浓度分布特征规律相反。表明棚内N2O主要排放源为土壤,CO2属于多源排放,棚室内作物和环境因素对CO2最终排放的影响力高于土壤。(4)反演式气体扩散模型的自动采样装置可以明显捕捉到棚区上方的N2O浓度变化,棚区空置期3.5米高处N2O浓度变化范围为0.673-0.689 mg·m-3,种植期N2O浓度变化范围为0.695-0.716 mg·m-3,种植期明显高于空置期。(5)静态箱/气象色谱法和反演式气体扩散模型在观测设施菜田N2O日排放特征时具有较好的一致性。静态箱/气象色谱法测得三天平均排放通量为252.51μg·m-2·h-1,高于反演式气体扩散模型观测结果192.21μg·m-2·h-1,高出26.75%。(6)在静态箱/气象色谱法和反演式气体扩散模型对棚室番茄全生长季的观测中,两种方法观测结果同样具有较好的一致性,在整个生长季中,静态箱测得土壤净排放通量为1817.49g·hm-2,排放因子为0.45%;反演式气体扩散模型测得土壤净排放通量为1250.95 g·hm-2,排放因子为0.32%,较静态箱测得结果低了29%。综上可知,设施菜田环境对N2O、CO2排放有较强影响,仅观测土壤排放无法具体衡量设施菜田N2O、CO2的最终排放。本研究尝试引入的反演式气体扩散模型与静态箱/气相色谱法N2O观测结果具有较好的一致性,表明反演式气体扩散模型适用于设施菜田N2O排放观测,为观测设施菜田N2O排放提供了新思路,为建立健全我国氮排放清单提供了新方法。