论文部分内容阅读
低品位复杂多金属矿石的利用,一直是矿物加工领域的研究重点和技术难题。基于氧化锰矿与硫化镍矿的氧化还原活性,本文以大洋多金属结核与低品位硫化镍矿为研究对象,以嗜酸氧化亚铁硫杆菌为浸矿细菌,采用协同生物浸出工艺回收矿石中的镍、锰、铜、钴,从热力学角度分析多种金属矿物协同溶浸特性,基于多金属结核阴极还原和硫化镍矿阳极氧化溶解特性,论述多金属结核阴极-硫化镍矿阳极协同生物腐蚀效应,以电极电化学动力学响应特性解析细菌对电极间氧化-还原的影响。同一酸性溶浸体系,多金属结核中锰铁氧化物的还原溶解电位,远高于低品位硫化镍矿中硫化物的氧化溶解电位,二者接触时构成腐蚀原电池,使两种矿石中有价金属矿物发生协同氧化-还原溶解;溶解过程中,多金属结核的Mn(IV)氧化矿物包裹结构被硫化镍矿中硫化物还原破坏而溶出结核中的镍、铜、钴,同时硫化镍矿中硫化矿物被多金属结核中Mn(IV)氧化物氧化分解而溶出硫化镍矿中的镍、铜、钻。经工艺条件优化后,确定协同A ferrooxidans菌浸出合理工艺条件为:矿石粒度为-0.038 mm占80%,Mn/S矿石质量比为1/1.3,液固比为12.5:1,搅拌速率为140 r·min-1,浸出温度为30 ℃,初始Fe3+浓度为1.0 g·L-1,初始接菌浓度为1.5×108/mL,pH为1.8,浸出时间为96h,此时,镍、锰、铜、钴浸出率分别达95.3%、97.3%、92.2%、97.8%,高于相应无菌无铁条件下浸出时镍、锰、铜、钴浸出率17、13、14.3、12.5个百分点;对应48 h内金属浸出率随反应时间延长呈线性增长关系,平均浸出速率分别达到16 mg·L·h-1、120.3 mg·L·h-1、6.4mg·L·h-1、1.01 mg·L·h-1,比相应无铁无菌条件下浸出时金属浸出速率分别提高91%、70%、47%、34%,实现了两种矿石中有价金属元素的协同浸出。电化学行为研究结果表明,大洋多金属结核阴极-低品位硫化镍矿阳极协同生物浸出由界面电化学反应控制;阴极还原对Mn(IV)矿物向Mn(II)物种转化强依赖,呈前置转化反应控制特征,阳极溶解限速于硫化物氧化溶解,主要表现为Fe3+/Fe2+和含硫物种氧化,表现出动力电流特性;A.ferrooxidans菌促进电子与H+向阴极表面迁移,加速MnO2/Mn2+和Fe3+/Fe2+电对还原转化,同时A ferrooxidans菌加速阳极界面活性粒子转移,促进阳极Fe3+/Fe2+和含硫物种电对氧化转化,使电极电荷转移内阻降低,阴极发生正极化及阳极发生负极化,阴极-阳极电极间电势差增大,两种矿石协同腐蚀原电池效应增强,从而提高两种矿石氧化-还原溶解速率。多金属结核阴极-硫化镍矿阳极协同生物提取有价金属,是矿石电极与浸出液界面处物种空穴运动的结果;阴极浸出表现为高价锰矿物O2-空穴及其腐蚀中间产物Mn3+空穴移动;阳极溶解则为含Fe(II)硫化物中Fe2+空穴电离运动;A.ferrooxidans菌以加速矿石电极与液相间质子及空穴运动而促进浸出。本论文的研究成果拓展了多金属氧化锰矿-硫化矿矿物加工技术理论及实践研究,为低品位复杂矿石资源的利用提供了一种新的参考。