矩阵方程的正定解和分数阶微分方程的谱问题

来源 :山东大学 | 被引量 : 0次 | 上传用户:pj00000pj
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
微分方程的研究是伴随着微积分的出现而发展起来的,具有300多年的悠久历史。微分方程领域研究内容丰富,是研究自然现象强有力的数学工具之一,同时也与其它学科有着紧密的联系,在自然科学、环境生态、工程技术、社会经济等方面有着广泛的应用。本文主要研究与微分方程理论和相关应用具有紧密联系的两大方面的内容,即矩阵方程的正定解及其扰动分析和分数阶微分方程的谱问题,其研究动机和内容详述如下。一方面对于许多来源于实际问题的用常微分方程,积分方程,积分微分方程刻画的数学物理问题,常用的一种处理方法是通过差分方法将其离散化,从而可以把原问题转化为某种矩阵方程来进行研究.矩阵方程是矩阵理论和数值代数领域的重要内容之一。近些年来,形式如X-∑i=1m Ai*Xpi Ai=Q的非线性矩阵方程由于来源广泛,包括微分方程,物理计算中的大型线性方程组,插值理论的极值问题,控制理论,梯形网络,动态规划,随机滤波等而引起了众多学者的关注,对这类方程正定解的相关理论和数值方法的研究已经取得了一系列的成果.由于正定解在实际问题中应用较多,所以我们只考虑矩阵方程的正定解。对此类非线性矩阵方程的研究主要考虑三方面内容:(i)存在正定解的充分和必要条件;(ii)求得正定解的有效的数值方法;(iii)关于方程正定解的扰动分析,包括扰动界,条件数,后向误差,剩余界.我们知道非线性矩阵方程的可解性是进行数值求解的理论基础,而有效的数值求解方法为定量求出解提供了可行的计算过程。由于非线性矩阵方程来源于工程和物理中的大数据计算问题,在求解过程中通常存在两类误差影响计算结果的精度,即数值计算方法引起的截断误差和计算环境引起的舍入误差,为了分析这些误差对原问题的解的影响,我们需要研究原始数据的扰动对解的影响,从而需要对矩阵方程的正定解进行扰动分析。用扰动界和条件数来揭示矩阵方程自身的稳定性,用后向误差和剩余界检验算法的数值稳定性和估计近似解的精确程度。本文在已有成果的基础上,研究下面形式的非线性矩阵方程:1.非线性矩阵方程X-∑i=1m Ai*Xpi Ai=Q(pi>0)来源于控制系统最优问题和插值理论最优问题,对此矩阵方程我们分m=1和m>1两种情况进行讨论.(i)当m=1时,原方程退化为非线性矩阵方程X-A*X-p A=Q(p>0),此时我们对p≥1和0<p<1两种情况进行讨论。当p≥1时,给出了方程存在唯一正定解的新的充分条件,并且利用矩阵函数X-p(p>0)的积分表示,推导出关于方程唯一正定解的扰动边界和由Rice定义的条件数的显式表达式。当0<p<1时,利用算子理论,推导出一个更精确的正定解的扰动界,同时结合Schauder不动点定理,得到了方程正定解的近似解的剩余界,推广了已有的相关结论,并且通过数值例子进行验证和说明.(ii)当m>1时,对非线性矩阵方程X-∑i=1m Ai*X-pi Ai=Q,当pi>0时,我们讨论了此方程的可解性,得到了方程存在正定解的充分和必要条件,并且推导出方程存在唯一正定解的条件,构造了得到此唯一正定解的迭代方法.利用不动点定理,Kronecker积和矩阵范数的性质,我们给出了方程正定解的扰动界和方程近似解的后向误差估计并且利用矩阵函数X-p (p>0)的积分表示和算子理论,推导出方程正定解的条件数的显式表达式。特别地,当0<pi≤1,Q=I时,利用偏序空间的单调有界原理,证明了矩阵方程对任意的系数矩阵都存在唯一的正定解。同时,利用偏序空间中的Schauder不动点定理和算子理论,得到了此矩阵方程正定解的两个扰动界,其中一个扰动界不依赖于方程的精确解,而另外一个扰动界要比前者精确些。利用不动点定理和范数不等式,我们推导出方程正定解的近似解的剩余界。利用矩阵函数X-p(0<p<1)的积分表示和算子理论,推导出方程正定解的条件数的显式表达式,并且通过数值例子进行验证和说明。2.非线性矩阵方程X-∑i=1m Ai*Xpi Ai=Q来源于数学物理问题,对此矩阵方程当pi>0时,我们先利用矩阵分解定理给出方程存在正定解的充分必要条件,然后分0<pi<1和pi>1两种情况进行讨论.当0<pi<1时,利用不动点定理,我们证明了此时方程总是有解,并且找到了解的存在区间。然后利用偏序空间矩阵序列的单调有界原理证明了方程存在唯一的正定解,同时利用不动点定理和算子理论,推导出方程正定解的两个扰动界和关于方程近似解的剩余界。基于矩阵函数Xp(0<p<1)的积分表示和算子理论,推导出方程正定解的条件数的显式表达式并且用数值例子进行验证.当pi>1时,我们推导出方程存在唯一正定解的充分条件,而且得到了方程正定解的一些性质,利用矩阵函数在Frobenius范数下的不等式,推导出方程正定解的一个扰动界.另一方面,对微分方程的一个重要的研究方法是通过研究微分方程谱的性质来对微分方程的解进行研究,也就是微分方程谱理论.整数阶微分方程谱问题也称为Sturm-Liouville问题,其相关理论于170多年前被提出来,自此它的相关理论在诸如科学,工程和数学领域占据重要地位。Sturm-Liouville问题源于常微分方程边值问题,而常微分方程的边值问题一部分直接来源于现实问题本身,另外的一大部分是源于偏微分方程,如热传导(或扩散)问题、弦(膜)振动问题、电磁学中的Maxwell方程问题等。进入19世纪,Fourier系统地提出了分离变量法,在将这一方法应用于更为复杂的物理现象产生的那些偏微分方程问题时,就会产生两个或多个常微分方程的边值问题。从算子的角度来看,Sturm-Liouville算子是一类十分重要的微分算子,在经典微分算子和近代量子物理学中均有重要的应用背景。另外,自二十世纪末开始,分数阶微积分理论的迅速发展和应用的日趋广泛,促进了分数阶微分方程的出现和发展。人们发现将分数阶微积分的观点引入微分方程更能准确地描述事物的变化规律和本质属性,于是分数阶微分方程在实际中有了广泛应用,如:分形动力学、连续力学、自动控制、流体力学、生物力学、粘弹性力学、量子力学、统计学、工程学、布朗运动、地震分析、神经的分数模型和描述种群繁殖的数学模型等。因此,分数阶微分方程越来越多的引起数学家的关注。很多时候,为了实际问题的需求也要考虑分数阶微分方程的谱问题。研究分数阶微分方程的谱问题既是解决实际问题的需要,同时又能丰富和完善分数阶微分方程的相关理论。分数阶微分方程的谱问题被相关学者提出后,一直没有得到深入的研究,目前,有学者用数值计算的方法来研究分数阶微分方程的谱问题,但就连普通的特征值和特征函数的性质也没有从理论上加以说明。到目前为止,从理论上讨论分数阶微分方程特征值和特征函数性质的文章非常少,基于此,本文主要讨论下面的分数阶微分方程谱问题:的谱问题,其中q∈L2(0.1)是实值函数,D0+α和D1-α分别是α阶的左,右分数阶Riemann-Liouville导数,1<α<3/2,μ是实数,λ是谱参数。基于Hilbert空间中的自伴紧算子的谱理论,我们证明了此谱问题的谱仅有可数个有限重的实特征值,相应的特征函数在Hilbert空间中构成完备正交系,并且估计出特征值的下界。的谱问题.其中q∈L2(0,1)是实值函数D0+α和D1-α分别是α阶的左,右分数阶Riemann-Liouville导数0<α<1/2,μ是实数,λ是谱参数。我们利用Hilbert空间中的自伴紧算子的谱理论证明了此类谱问题的谱仅有可数个有限重的实特征值,相应的特征函数在Hilbert空间中构成完备正交系,并且估计出特征值的下界。关于仅含左或右分数阶导数的微分方程的初值问题的理论已经相当完善,解的存在性,解关于参数的连续依赖性,可微性及解的延拓定理已经建立,但对同时含有左、右分数阶导数的微分方程,其“初值问题”的提法不甚清楚,现有的关于分数阶微分方程的专著及相关文献中也很少陈述。但在整数阶微分方程边值问题的研究中,其相应的初值问题的理论是一种十分有效的方法和工具,例如Prufer变换,解关于参数的可微性等。基于此,本章我们首先提出了同时含左、右分数阶导数的微分方程的两类“初值问题”,在适当的条件下我们可以证明此类“初值问题”解的存在性和唯一性,尔后,利用上述结果我们专门研究了特征值问题中特征值的几何重数,建立了特征值为单的一系列问题:1.在区间(0,1)上首先建立分数阶微分方程初值问题的相关结论,其中q∈L(0,1)是实值函数,D0+α和D1-α分别是α阶的左,右分数阶Riemann-Liouville导数,0<α<1,μ,λ是实数.而后利用这些结论证明了分数阶微分方程的特征值的几何重数是单的.2.在区间(0,1)上首先建立分数阶微分方程初值问题的相关结论,其中q∈L(0,1)是实值函数,D0+α和CD1-α分别是a阶的左分数阶Riemann-Liouville导数和a阶的右分数阶Caputo导数,0<α<1/2,μ,λ是实数。而后利用这些结论证明了分数阶微分方程的特征值的几何重数是单的.
其他文献
海南岛的热带雨林是我国森林生态系统中结构最复杂、生物多样性最丰富的类型之一,具有极其重要的保育价值和科学研究价值。海南岛热带山地雨林主要分布在海拔700~1300m的山地,是
目的探讨新生儿耳聋基因筛查的意义,对携带耳聋基因儿童的家长提出预警并指导其进行听力学随诊和生活防护。方法经产妇及家属知情同意后,收集本地区2014年8月—2018年2月出生
猪繁殖与呼吸综合征(Porcine reproductive and respiratory syndrome,PRRS)是以母猪繁殖障碍和新生仔猪呼吸道疾病为主要症状的一种高度接触性、高死亡率传染病,由猪繁殖与
输煤栈桥有多种形式,而模块式钢栈桥是其中一种新的结构形式,采用模块装配化施工。针对以往模块式钢栈桥底板存在自重大、耗钢量多等问题,河北工程大学课题组提出一种新型栈桥底板结构——轻质混凝土底板,是由轻钢骨架和现浇泡沫混凝土构成的结构。本文以这种新型底板为研究对象,对其静力特性进行研究,设计了试验方案并组织实施,将获取的试验数据进行分析。然后以有限元理论作为基础,采用ABAQUS软件对其进行相应分析,
随着科技进步,在装备车辆中也引进了多种新技术,这使得装备车辆的信息化技术日益完善,自动化程度逐步提高。这也导致着装备车辆功能的复杂化。对接机构便是这其中一种复杂的新型装备车辆。而对接机构的可靠安全运行尤为重要。目前国内对于故障预测与健康管理(Prognostics and Health Management,PHM)系统的研究尚处于初期阶段,缺乏系统的通用软件、硬件平台,尚无法形成一套即统一又完善
休闲农业是当前一种新型的农业发展模式,对解决我国“三农”问题具有重要意义。河北省山区休闲农业发展迅速,休闲农业园区的发展对休闲农业种植模式的要求较高,不仅要满足人
第一部分前列腺癌新型生物标记及其与前列腺癌病理特征和预后的相关性研究1目的1.利用高通量测序方法对前列腺癌和正常前列腺组织中的差异表达基因进行筛选,并利用TCGA数据库
目的:查找影响替硝唑氯化钠注射液有关物质升高的因素,并提出控制措施。方法通过分析产品的有关物质中杂质产生的因素,并结合试验及生产经验,确定最佳的生产工艺。结果与结论产品
过去数十年,基于超材料对电磁波强大的控制能力,人们不断探索其在光学功能器件上的应用,如吸收器、调制器和偏振控制器件等。作为超材料“家族”的成员,双曲色散和平面超材料
大数据时代的到来促进了数据分析方法的创新,基于神经网络的深度学习技术在多个领域取得了突破性的进展。递归神经网络(RNN)在处理连续时间序列的问题中起到了主导地位,被广