论文部分内容阅读
本论文的主要内容就是将流动注射化学发光分析技术、纳米技术与核酸分子杂交技术相结合,研制高灵敏度高选择性的新型化学发光DNA传感器,对特定DNA片段进行选择性地识别和测定,为许多疾病的临床早期诊断提供基础性研究。本文着重进行了三种类型的DNA传感器的研制和性质研究:1.研究了一种新颖、灵敏的将luminol-H2O2-Cu2+流动注射化学发光(FIA-CL)体系用于短序列DNA检测的生物传感器。工作原理如下:首先将目标DNA固定在玻碳电极(GCE)上,然后与标记了CuS纳米粒子的探针DNA杂交;用酸溶液将Cu2+从杂交产物中溶出;最后,利用luminol-H2O2-Cu2+体系对Cu2+进行流动注射化学发光的检测,通过该体系的化学发光强度可以获知Cu2+的浓度,从而实现对DNA的定量检测。为了增强DNA传感器的灵敏度,还利用阳极伏安溶出技术(ASV)进行了Cu2+的预富集过程。在实验选定的最佳条件下,得到了目标DNA的线性范围为2.0×10-12~1.0×10-10 mol/L,检测限为5.5×10-13 mol/L。另外,两碱基错配序列和完全非互补序列的杂交情况同样被检测。其中,两碱基错配序列显示有微弱的化学发光强度而完全非互补序列则无信号检出。这说明我们设计的DNA传感器具有良好的选择性。最后,对我们实验中所采用的luminol-H2O2-Cu2+体系的化学发光机理进行了研究和探讨,并作出合理的理论推测。2.在前期工作的基础上,我们改进了实验方法,研究了另一种灵敏度更高的基于金纳米粒子信号放大的流动注射化学发光法检测DNA特定序列的生物传感器。首先,将巯基修饰的捕获DNA固定在金电极表面,之后分别与目标DNA和3’位标记CuS纳米粒子、5’位端基标记Au纳米粒子的信号DNA探针杂交,形成了“三明治”式的DNA杂交复合物。杂交结果的监测是通过从杂交物上溶解下来并预富集后的Cu2+参与luminol-H2O2-Cu2+体系反应的化学发光强度来完成的。因为单个Au纳米粒子可负载很多修饰了CuS纳米粒子的信号DNA探针,所以将Au纳米粒子设计到该传感器中能够很大的增强其灵敏度。而利用阳极溶出伏安技术进行的Cu2+的预富集过程进一步增强了传感器的灵敏度。结合以上两种因素,该DNA传感器可检测到fmol/L级的低浓度的目标DNA,并在两碱基错配DNA的测定上显示出良好的选择性。同时,对实验的最佳检测条件进行了选择,对DNA探针的微观性质进行了系统研究和探讨。在最佳条件下进行检测,在2.0×10-14~2.0×10-12 mol/L范围,化学发光强度随目标DNA浓度的增加而增加,该法检测限可达到4.8×10-15 mol/L。3.在以上两种DNA传感器的研究基础上,我们结合最新的文献报道构建了一种新颖的、利用CuS纳米粒子修饰的鸟嘌呤(G-CuS NPs)探针检测单碱基错配DNA序列的流动注射化学发光法。与前两种不同的是这一新的传感器的研究目的不再局限于完全互补序列和非完全互补序列DNA的识别和检测,它的主要用途是DNA缺陷(DNA损伤)或DNA突变的检测。其原理是:首先将巯基修饰的捕获DNA固定在金电极表面,之后直接与单碱基错配目标DNA序列(碱基错配相当于模拟实际样品中的DNA缺陷或损伤、突变的情况)进行杂交并以与捕获DNA完全互补的DNA序列封闭活性点,最后,在DNA聚合酶的催化下,按照Watson-Crick碱基配对法则,硫化铜纳米粒子修饰的鸟嘌呤探针通过与目标DNA上的错配碱基的配对结合连接到dsDNA上。同样地,杂交结果的监测通过从杂交物上溶解下来并预富集后的Cu2+参与luminol-CN--Cu2+体系反应的化学发光强度来完成。为了增强DNA传感器的灵敏度,还利用阳极伏安溶出技术进行了Cu2+的预富集过程。理论上如无缺陷或损伤及突变情况(捕获序列与目标序列完全杂交),则探针不能与双链结合无信号检出。在实验选定的最佳条件下,体系的化学发光强度随单碱基错配目标DNA的浓度的增大而增强,验证了该实验方案的可行性。