镍钼双金属基电极材料的制备及超电容性能研究

来源 :河北科技大学 | 被引量 : 0次 | 上传用户:catherine00800
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
超级电容器同时具备传统电容器高功率输出和商业电池高电荷储备的能力,是一种非常有效的储能器件,其性能主要取决于电极材料,因此发展高性能的电极材料成为超级电容器研究的重点突破方向。其中,过渡金属化合物具有高的理论比电容值在超级电容器电极材料领域颇受关注。本文研究镍钼双金属化合物在超电容方面的性能,并通过材料复合、结构调控和自支撑电极等多种途径,优化过渡金属化合物的超电容性能,合成了多种电容性能优异的超级电容器电极材料。主要研究内容如下:
  (1)采用化学沉淀法制备了NiMoO4,其比电容值为552F/g(0.25A/g)。为了继续提升其比电容性能,以g-C3N4为基底合成了NiMoO4/g-C3N4复合材料,其比电容值可达到1275F/g(0.25A/g)。以此为正极材料组装的NiMoO4/g-C3N4//rGO混合超级电容器在150W/kg的功率密度下可达到46Wh/kg的能量密度,充放电循环4000次电容保留率达到70%。
  (2)采用溶剂热法制备了NiMoS4,通过添加NH4F调控NiMoS4的结构得到NiMoS4-A。NiMoS4和NiMoS4-A的比电容在电流密度为0.5A/g时分别为580和1137F/g,比NiMoO4的比电容值均有所提升,这是由金属硫化物比对应氧化物更高的导电性和电容性能导致的。此外,组装的NiMoS4-A//AC混合超级电容器在功率密度94W/kg下可达到25Wh/kg的能量密度,充放电循环5000次电容保留率达到80%。
  (3)采用溶剂热法制备了多孔海绵状结构NiMoS4/泡沫镍自支撑电极,其直接用作超级电容器的电极。在0.75A/g的电流密度下可达到1680F/g的高比电容,比传统的NiMoS4电极的比电容值更高,这是由于自支撑电极中没有使用阻碍电子/离子迁移的粘合剂。此外,组装的NiMoS4/泡沫镍//AC混合超级电容器在94W/kg的功率密度下具有32Wh/kg的能量密度,充放电循环8000次电容保留率达到84%。
  综上可知,本论文研发的几类双金属Ni-Mo基电极材料,采用价廉易得的Ni、Mo盐为原料,经过性能调控具有较高超电容性能,在储能材料的制备领域具有参考价值。
其他文献
自21世纪以来,全球的能源危机问题日趋严重,如何实现能源的转换并存储,促进人类社会的可持续发展已经成为一个重要问题。超级电容器是一种新型的储能器件,由于充放电速度快,功率密度高,循环寿命长,造价低廉和绿色环保等优点,近年受到国内外越来越广泛的关注。  目前,电极材料的选择并优化是超级电容器研发的核心问题。碳材料作为超级电容器最早使用的电极材料之一,具有高导电性、优良的循环稳定性和广泛的原料来源。在
硫氧镁水泥是由轻烧氧化镁和一定浓度的硫酸镁溶液配制而成的一种气硬性胶凝材料,具有质量轻、体积稳定性好等优异性能。但是,与氯氧镁水泥相比,硫氧镁水泥早期强度较低,生产成本较高。为此,本文基于硫氧镁水泥的基础配比,选择性添加助剂和工业废弃物,发挥不同材料的协同耦合效应,开发一种力学强度高、耐水性好、生产成本低的硫氧镁水泥技术。  首先,固定氧化镁质量,研究了硫酸镁溶液浓度、水固比等因素对产品力学强度和
不饱和聚酯树脂(unsaturated polyester resins,简称UPR)作为一种热固性高分子材料,它性能优良,由UPR、促进剂、填料混合而成的复合材料原子灰,适用于各种基材的涂装,其中适用于镀锌板等有色金属的原子灰俗称合金灰,其可以解决普通原子灰在镀锌板基材无附着力的难题。目前国内合金灰在有色金属基材上普遍存在附着力差、凝胶后不能快速表干等问题,虽然国外合金灰性能优异,但价格昂贵,限
水性涂料具有低污染、易施工等优点,但在防腐、耐热、力学性能等方面较差。石墨烯作为新型纳米碳材料,具有结构致密、化学性能稳定、机械强度高等优点,将其加入水性涂料中可提高涂层的力学和防腐等性能,然而由于石墨烯片层较强的范德华力以及高比表面积使其容易在聚合物中发生团聚,影响了其优异性能的发挥。本课题通过对石墨烯进行有效的接枝改性以提高与聚合物的相容性,并采用原位聚合法在高分子乳液制备过程中将其与单体接枝
学位
挥发性有机物(VOCs)是工业排放的一种重要污染物,对环境和人类健康都具有危害。VOCs的有效治理是环境治理的重要环节。目前,利用蓄热催化燃烧反应器对VOCs进行处理是一种比较通用的技术。但蓄热催化燃烧设备存在无法检测催化段VOCs气体以及催化剂固体的温度,无法消除“飞温”与“熄火”对反应器的影响等问题。本论文将蓄热催化燃烧实验和数学模型相结合的方法,对VOCs蓄热催化燃烧过程进行研究,探究最佳操
近年来,细菌和病毒对人类生存和发展造成的影响已引起了人们的广泛关注。过一硫酸氢钾复合盐由于具有强大的杀菌能力、高效的消毒效果、安全的使用过程成为了人们对抗细菌和病毒的理想消毒剂,然而因其高昂的成本使推广使用受到了限制。本研究通过对过一硫酸氢钾复合盐和过氧化硫酸钠的制备工艺进行优化,再将二者进行复配,旨在开发出一种性能优良、成本低廉的消毒产品。  首先进行了过一硫酸氢钾复合盐和过氧化硫酸钠两种原料药
学位
水性聚氨酯(WPU)涂层剂是一种以水为介质的环保型高分子材料,具有安全、成本低、无溶剂等特点,在棉纺、家具、建筑等领域的表面改性中应用广泛。但极易燃烧的缺点限制了WPU的使用,因此研究环保、高效的阻燃WPU十分必要。反应型阻燃水性聚氨酯是指阻燃剂通过参与化学反应加入聚氨酯的分子链上,因其具有阻燃效果持久、阻燃剂与聚氨酯相容性好等特点,被认为是获得阻燃水性聚氨酯涂层材料的潜在更有效方法。为了满足WP
在半导体硅晶片进行切割作业时需要一种紫外光固化的可剥离胶,其主要作用一是在进行切割操作时对大的晶圆片进行固定并防止晶圆片破裂产生飞溅,二是在晶圆片加工或封装后经紫外光照射,胶带的粘结力大大降低,容易剥离并不污染晶圆片的表面。  本文利用聚乙二醇与异佛尔酮二异氰酸酯反应制备了一种线性的异氰酸酯封端的两官能度聚乙二醇改性二异氰酸酯预聚物(PEG-IPDI)。经过热处理后,将其作为交联剂与丙烯酸酯共聚物
聚合物刷由于在吸附、粘附、光滑以及湿润等方面的特点突出,在许多方面都有重要的应用。将氮氧自由基和磺酸基负载到聚合物刷上,可制得兼具氮氧自由基和磺酸基的双功能聚合物刷。此方法可以解决小分子氮氧自由基、磺酸类化合物难以循环使用的问题。本文选择了两种聚苯乙烯基氯球为载体,通过表面接枝制备含氮氧自由基和磺酸基的聚合物刷。将其应用在醇的选择性催化氧化,N-(乙氧基亚甲基)苯胺的合成和甲氧基聚乙二醇甲基丙烯酸
在众多选择性催化氧化醇类体系中,2,2,6,6-四甲基哌啶-1-氧自由基(TEMPO)与NaBr/NaClO构成的催化体系具有反应条件温和、催化活性和选择性高等优点。但小分子TEMPO存在价格昂贵、有毒和难以循环使用等问题。  为此,本文选择了一种水溶性良好且有大量表面官能团、易修饰等独特性质的聚酰胺胺(PAMAM)作为载体来制备负载TEMPO的水溶性大分子催化剂,并研究了其对纤维素的催化氧化性能