论文部分内容阅读
本文选取废弃核桃壳(常见的生物质材料)作为原材料,通过化学活化和物理活化(微波水蒸汽加热),将其制成多孔材料;选取石蜡、癸酸两种相变材料,采用真空浸入法与之复合,制备出多孔相变复合材料。分别利用全自动比表面积及孔径分析仪、扫描电子显微镜、傅里叶变换红外光谱仪对制备出的核桃壳多孔材料以及多孔相变复合材料的孔径、形貌、结构进行表征。孔径测试结果表明:使用活化剂处理所得多孔活性炭较未使用活化剂活化所得多孔活性炭具有更发达的孔隙结构,无论是比表面积还是孔体积均大幅增加。形貌测试结果表明:使用活化剂活化所得多孔活性炭呈复杂的网状结构,具有良好的孔隙结构;多孔相变复合材料中相变材料被吸附在多孔活性炭的孔内以及孔周围。结构测试结果表明:使用活化剂活化所得多孔活性炭的表面含有羧基、羟基以及醚基等官能团,这些官能团的存在使得制备出的多孔活性炭具有较好的吸附能力。其次,利用热分析仪、恒温恒湿箱等测试仪器,对多孔相变复合材料的热湿性能进行测试。热性能测试结果表明:多孔相变复合材料具有适宜的相变温度以及相变潜热,在熔化、凝固过程中的相变温度分别为28.15℃、34.05℃;相变焓分别为66.45J/g、65.5J/g。湿性能测试结果表明:无论是饱和盐溶液测试法还是恒温恒湿箱测试法,多孔相变复合材料均具有一定的吸放湿性能,在相对湿度升至最大时,其最大平衡吸湿量为0.3509g/g,相对湿度降至最低时,最大平衡放湿量为0.3519g/g。最后,将多孔相变复合材料与石膏复合,对石膏基多孔相变复合材料进行热湿性能的试验。试验结果表明:随着多孔相变复合材料掺入量的增加,石膏基相变复合材料的储放热能力有所增加,并且吸放湿能力也随之增加。在此基础上,本文对石膏基相变复合材料的调温调湿机理也进行了浅略的探讨。