论文部分内容阅读
往复活塞式压缩机热力、动力计算是压缩机设计计算中基本的,又是最重要的一项工作,根据用户提供的成分、气量、压力等参数要求,经过热力计算得到压缩机的相关参数如级数、列数、气缸尺寸、机型大小、轴功率等。经过动力计算得到飞轮矩从而完成飞轮设计。在曲轴上安装飞轮的目的是增大转动惯性使曲轴尽可能均匀旋转,避免由于阻力矩随曲柄转角发生周期性变化过大而导致电动机中的电流波动和电压波动超过允许值。同时经过动力计算得到活塞式压缩机的受力情况,准确地分析机组受力情况对消除机组的振动非常重要。在变工况条件下需要快速实现核算原设计的飞轮是否满足运行要求。活塞式压缩机热力计算、动力计算的结果将为各部件图形以及基础设计提供原始数据,其计算结果的精确程度体现了压缩机的设计水平,也始终是压缩机研究方面的一个课题。当压缩机的操作条件发生较大变化,将使活塞式压缩机的级间压力、温度以及功率、排气量等发生变化,需要重新进行上述计算掌握变化的程度,以核算原设计的飞轮矩是否满足要求。此外生产上常使用某些现成的压缩机来压缩非原定气体或非额定工况的情况,也需要进行热力、动力复算。在生产过程中对压缩机的技术改造、设计开发其计算工作量巨大,寻求简捷的计算方法对企业技术改造、提高大型工艺用压缩机设计效率和设计计算精度具有重要意义。 传统的活塞式压缩机的热力、动力计算,计算点数众多,计算工作量极大,以活塞式压缩机动力计算为例,采用作图法完成每一级气缸切向力曲线绘制之前需要相应完成往复惯性力、盖侧气体力、轴侧气体力曲线的绘制,其中每条曲线至少要有36个计算点。而对于多级压缩机而言,压缩机的切向力曲线是由各级切向力曲线合成的,其计算工作量之大常常令人难以承受,寻找一种通用的、简便的方法应用于往复活塞式压缩机的热力、动力计算具有重要的意义。 本文利用Excel软件完成了活塞式压缩机的热力、动力计算方法的研究,利用Excel环境下的数据处理实现了在三维设计软件下压缩机切向力曲线的绘制,使得通过切向力曲线来绘制幅度面积矢量图简单易行,为准确的飞轮设计、减小压缩机的振动创造条件。尤其动力计算中采用非传统的解析法进行往复惯性力、盖侧气体力、轴侧气体力、切向力曲线的绘制使得压缩机切向力曲线的合成变得非常简便,计算过程解决的