论文部分内容阅读
制浆行业能耗较高,而其主要的用能来源于煤与黑液的直接燃烧。燃烧锅炉具有燃烧效率低、污染排放大的缺点,因此制浆过程同时也是高排放的产业。利用更低成本、更清洁环保的方式优化制浆过程中的煤炭以及黑液中的能量利用有十分重要的现实意义。气化技术是未来清洁用煤的核心技术,而配合气化技术的低硫化物碱性亚硫酸钠-蒽醌法制浆(Mini-Sulfide Sulfite Anthraquinone,MSSAQ)具有硬度低、颜色浅、易漂白等特点,其制浆强度与硫酸盐法制浆相当,但得率要高8%10%。而现如今由于添加了气化流程后投入成本过高,阻碍了MSSAQ制浆技术的真正实现。本文基于已有的MSSAQ制浆流程,设计出一套集成化学链燃烧的制浆过程。该过程利用以铜作为携氧物质的化学链燃烧单元具有内在分离二氧化碳与二氧化硫的特性,对煤炭以及黑液气化后的合成气直接进行燃烧利用,而燃烧的二氧化硫废气可用于蒸煮化学药品的制作,二氧化碳可直接进行碳捕集。这套设计方案实现了制浆过程黑液与煤炭的高能效、低排放、低成本的利用。文章将使用Aspen Plus对煤气化、黑液气化以及化学链燃烧单元进行模拟。通过模拟的结果分析方案的能效、碳排放以及投入成本。并使用基于增强自适应差分进化算法对方案的进行水热集成优化,给出算法优化后的结果和各参数的敏感性分析。根据模拟的结果,化学链燃烧单元中的还原反应器与氧化反应器分别运行在900℃与850℃,压力为2.5MPa,生产每吨风干浆的携氧物质摩尔流量为50kmol。集成化学链燃烧单元的MSSAQ(CLC-BLG-MSSAQ)制浆过程,能效比kraft制浆要提高25%,比只进行黑液气化利用的MSSAQ制浆(BLG-MSSAQ)过程要提高11.3%;碳排放量为2.43吨,相比于kraft制浆过程和BLG-MSSAQ制浆过程分别减小了0.62吨和0.17吨的二氧化碳排放,且花费在废气处理的成本要比kraft制浆过程和BLG-MSSAQ制浆过程要分别少88%和86%;在US$0/tCO2e与US$20/tCO2e的碳税政策下,CLC-BLG-MSSAQ制浆过程相比与kraft制浆过程没有明显的成本优势,但在US$40/tCO2e,每年投入成本为8.6亿元,相比于kraft和BLG-MSSAQ制浆过程要少22%和38%;在US60/tCO2e政策下,每年投入成本为8.8亿元,相比于kraft和BLG-MSSAQ制浆过程要少37%和42%。根据水热集成优化后的结果,生产每吨浆料约需56.1元的新鲜水与221.8元的公用工程费用,另外还需32.47元用于购买换热器,一共能回收约7.5GJ的热量。与原方案相比,优化后的方案运行成本降低了约46.6%。