论文部分内容阅读
蛋白质晶体学是一门研究蛋白质结构与功能的边缘学科。随着生物学领域对精确的生物大分子结构需求的日益增加,尤其是利用单晶X射线衍射法得到的三维结构,使得研究生物大分子晶体的生长越来越受到重视。然而,生物大分子的结晶相当困难,从某种意义上讲这是生物大分子结构测定的限制因素。
离子液体具有独特的结构和物理化学性质,已经成为目前化学界的热点课题之一,而且在生命科学领域也开始得到应用,尤其是作为生物催化反应的溶剂或共溶剂的研究更是备受关注,近年来,离子液体也开始应用于蛋白质结晶方面。
本论文将一种新体系——离子液体—水用于蛋白质的结晶。在该体系中,实现了蛋白质晶体在离子液体中的可控生长,培养了符合X射线衍射条件的蛋白质单晶,对离子液体在蛋白质结晶过程中的作用机理进行了探讨,并剖析了离子液体含量与蛋白质晶体的晶型、形貌和品质间的关系。此外,从动力学角度系统地分析了离子液体在蛋白质结晶过程中对晶体生长速率的控制作用,进而优化结晶条件,改善晶体质量。
采用一步法和两步法分别合成了离子液体[BMIM]CI(1—丁基—3—甲基咪唑氯化物)、[BMIM]BF4(1—丁基—3—甲基咪唑四氟硼酸盐)和[BMIM]PF6(1—丁基—3—甲基咪唑六氟磷酸盐),借助红外光谱分析表征了其化学结构。其次,为了进一步研究离子液体对蛋白质晶体生长过程的影响机制,采用BCA法通过紫外一可见分光光度计测定蛋白质在离子液体—水混合溶液中的溶解度,结果表明,离子液体在体系中起到了类似无机盐类沉淀剂的作用,促进了蛋白质分子从溶液中的析出。通过测定[BMIM]BF4—乙酸乙酸钠—NaCl离子液体双水相体系的三元体系相图,研究了培养溶液中各组分间的溶解度关系,并将其用于蛋白质晶体的培养,以控制了溶液的局部过饱和度。
采用悬滴法和批量法两种结晶方法,在离子液体—水体系中实现了对溶菌酶晶体的可控生长,得到了空间群为P43212的四方晶系晶体,并对其结构进行了模型解析工作。考察了沉淀剂种类、溶液过饱和度、离子液体的含量、结晶温度等实验参数的改变对溶菌酶晶型、晶体形貌和品质的影响。研究表明,[BMIM]BF4更适于溶菌酶晶体的培养,在该体系中,[BMIM]BF4与NaCl一起作为联合沉淀剂使用,晶体尺寸明显增大,结晶速率得以控制,晶体质量有所改善。另外,随着[BMIM]BF4含量的增加,晶体形貌逐渐由块状变为棒状,且长径比也随之增大。
采用悬滴结晶法,在[BMIM]BF4—水体系中实现了对索马甜蛋白单晶体的可控生长,得到了空间群为P41212的四方晶系晶体,并解析了其初始模型结构。在该体系中,[BMIM]BF4被单独的作为沉淀剂使用,并且研究了结晶温度、离子液体[BMIM]BF4的含量等培养条件对索马甜蛋白晶型和品质的影响。
离子液体作为一种具有特殊结构和功能的溶剂,在蛋白质结晶的过程中具有与无机盐类沉淀剂相类似的作用。同时形成双水相体系降低溶液的局部过饱和度,发挥了模板剂、联合沉淀剂和添加剂的多重作用,有效的控制晶核的生成数量,提高单晶出现的几率。可以通过调节离子液体的含量来控制蛋白质晶体的生长速率、大小和质量。