基于变分自编码和生成对抗网络的高质量手绘草图生成研究

来源 :华中科技大学 | 被引量 : 0次 | 上传用户:nishi1221
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
手绘草图是人类进行思想交流的媒介,在沟通和设计中都扮演着重要的角色。近年来,深度生成模型在光栅图片生成领域迅速崛起,手绘草图的生成也受到了广泛关注。Sketch-pix2seq是目前手绘草图生成领域最受欢迎的一种生成模型,但它无法捕获组件的全局位置关系,当草图组件较多时,这一问题更为严重;同时现有的草图生成模型受VAE(Variational Auto-encoder)框架的影响,很容易生成细节表达不清楚的草图。为了提高生成草图的质量,本文提出了两种基于不同架构的草图生成模型:
  (1)基于VAE和注意力机制的手绘草图生成模型。针对模型Sketch-pix2seq无法学习组件全局位置关系的问题,本文设计了一种基于VAE和注意力机制的生成模型ESkeVAE(Enhanced Sketch Variational Auto-encoder)。该模型通过在编码器部分添加注意力模块来综合学习草图的局部结构特征和全局结构特征。另外,针对手绘草图没有明确评价方法的问题,本文根据草图的自身特性,设计了一种主观评价指标。实验结果表明,ESkeVAE模型的质量要优于Sketch-RNN和Sketch-pix2seq,并且在草图组件较多时,质量提升更为明显。
  (2)融合ESkeVAE和GAN(Generative Adversarial Networks)的手绘草图生成模型。针对现有草图生成方法很容易生成细节表达不清楚草图的问题,本文设计了一种融合ESkeVAE和GAN的生成方法ESkeVAE-GAN,该模型基于VAE-GAN生成框架,包含三个组成模块:编码器、生成器和鉴别器。编码器和生成器构成VAE结构,生成器和鉴别器构成GAN结构,利用GAN来弥补VAE架构的缺点。实验结果表明,ESkeVAE-GAN模型在ESkeVAE模型基础上进一步提高了模型质量,相比于Sketch-RNN和Sketch-pix2seq,生成草图质量提升显著。
其他文献
NANDFlash具有高性能、低延迟、低功耗等优势,因此被广泛应用于数据密集型存储系统。日志结构文件系统(Log-structured File System,LFS)对Flash特性友好,其通过异地更新,将随机写转化为顺序写,具有更高的随机写性能和更低的一致性维护开销。然而,LFS在运行过程中仍然存在段清理开销过大、文件系统写放大严重等问题,导致LFS的性能和Flash设备的寿命大幅降低。  I
大数据时代,闪存凭借优越的性能逐渐取代磁盘成为主流的存储设备。在闪存存储系统中,闪存文件系统的日志结构写方式和闪存转换层的地址映射功能,使数据块和空闲块离散地分布在文件系统和闪存中,带来了严重的碎片化问题。碎片的管理分为碎片避免和碎片整理,现有的碎片避免方案主要面向磁盘文件系统,不适合闪存文件系统;而碎片整理引入了大量的写开销,严重缩短了闪存的寿命。  针对闪存文件系统的逻辑层碎片问题,提出了一种
学位
基于阻变存储器(Resistive Random Access Memory,RRAM)的交叉开关(Crossbar)阵列结构支持高能效存内计算(Processing-In-Memory,PIM),是实现神经形态计算系统最具潜力的架构之一。然而,RRAM器件其单元本身及RRAM单元构成的阵列具有一些非理想因素,这些非理想因素会影响计算的操作数进而使系统的计算准确率降低。选用单元稳定性更高的数字RR
传统动态随机存储器(Dynamic Random Access Memory,DRAM)面临存储密度难以进一步提升、刷新功耗高等问题。而新兴持久内存(Persistent Memory,PM)的读写性能与DRAM接近,同时还具有低功耗、非易失等特性。这使得PM正在成为DRAM内存的一种补充。在PM的几种访问模式中,直接访问(Direct Access, DAX)模式支持应用利用PM的非易失性,且避
随着闪存工艺尺寸的缩小以及单元内多比特存储技术的发展,闪存芯片的容量逐渐增加,但闪存的可靠性问题变得更加严重。固态硬盘(Solid State Driver,SSD)内部现有的可靠性方案(如ECC、RAID)不能很好的应对闪存的多级可靠性问题;另外,固定的可靠性方案未考虑块间磨损不平衡:在SSD前期提供了过多的冗余,从而增加了闪存的写放大,并且在SSD后期也不能容忍条带内出现多个错误的情况。  针
学位
键值存储系统是当前数据中心的主要存储技术,具有高性能、高可用和高扩展性的特点,能够满足大数据环境下的数据存储需求。另外,非易失性内存(Non-Volatile Memory,NVM)是一种新型存储设备,具有数据非易失、高存储密度、高性能和高并发等特点。新型NVM设备的出现,也为研究更高效的键值存储系统带来了机遇与挑战。  基于日志结构合并树(Log-StructuredMerged-Tree,LS
基于日志结构合并树(Log Structured Merged Tree,LSM-tree)的键值存储系统以其良好的存储扩展性而被广泛地用作于各类互联网应用的存储服务。然而,互联网中数据总量的急剧增长为键值存储系统带来了新的问题。一方面,键值存储系统的缓存容量逐渐变得相对不足,而缓存往往对整个系统的性能起到关键性作用。另一方面,键值存储系统往往为多种应用提供服务,如出行类、餐饮类以及办公类应用等。
学位
互联网即将进入5G时代,智慧终端和传感器等设备产生的数据呈指数级增长,对云基础设施的需求不断扩大。键值存储系统作为非结构化数据库的代表,在数据中心扮演着举足轻重的角色,其主要存储引擎是日志结构合并树(Log-StructuredMerge-Tree,LSM树)。但测试发现,由于LSM树的L0层SST文件的键范围存在重叠,加上L0层容量控制机制,使得LSM树的合并操作会引起系统写性能周期性波动。  
学位
新型快速存储设备NVMeSSD(Non-volatile Memory Express SSD)以其高性能,低延迟的特点,逐渐替代传统硬件设备成为构建大规模高性能存储系统的首选。硬件设备变更推动了I/O软件栈的变革,为了降低I/O路径的软件开销以及充分发挥硬件性能,NVMe精简软件栈逐渐成为NVMeSSD等高性能存储设备的标配。然而无论内核NVMe软件栈还是用户态NVMe软件栈均以减少I/O请求处
在全球数据量呈现爆炸式增长的大数据时代,传统存储系统架构已成为瓶颈。NVM(Non-Volatile Memory)的出现,为解决传统存储系统内外存之间的性能鸿沟、满足数据密集型应用对内存访问的需求带来了希望。在DRAM(Dynamic Random Access Memory)与NVM混合的架构下,由于NVM在不同应用场景下需要满足不同的内存需求,使得传统用户层的动态内存分配器不再适用,需要重新