【摘 要】
:
镧系掺杂上转换纳米颗粒能够将近红外激发转化为可见和紫外发射,目前,上转换纳米颗粒因其光学稳定性和化学稳定性高、潜在毒性低、光穿透深度大、无背景光干扰以及对生物组织几乎无损伤等显著优点,在哺乳动物细胞的成像领域得到广泛的研究和应用,但其在植物细胞中的成像鲜少报道。这是由于植物细胞具有特殊的细胞壁结构(3~10 nm),其中厚厚的纤维素和果胶阻碍了大分子物质的进入,因此,应用于植物细胞成像的纳米颗粒应
论文部分内容阅读
镧系掺杂上转换纳米颗粒能够将近红外激发转化为可见和紫外发射,目前,上转换纳米颗粒因其光学稳定性和化学稳定性高、潜在毒性低、光穿透深度大、无背景光干扰以及对生物组织几乎无损伤等显著优点,在哺乳动物细胞的成像领域得到广泛的研究和应用,但其在植物细胞中的成像鲜少报道。这是由于植物细胞具有特殊的细胞壁结构(3~10 nm),其中厚厚的纤维素和果胶阻碍了大分子物质的进入,因此,应用于植物细胞成像的纳米颗粒应足够小。而当上转换纳米颗粒的尺寸减小时,颗粒表面的缺陷大量增加,引起表面猝灭位点的增加,最终导致上转换纳米颗粒的发光效率降低而无法获得令人满意的细胞成像的分辨率。因此,利用上转换纳米颗粒实现植物细胞的高分辨仍是一项艰巨的任务。本文运用热裂解的方法合成双锥形的LiErF4:Tm3+@LiYF4上转换纳米颗粒,通过引入Tm3+离子作为能量捕获中心和包覆核壳结构对纳米颗粒内部和表面的缺陷进行修饰,从而显著提高其颗粒的光上转换输出的强度。同时,所合成纳米颗粒的双锥型形貌有利于其穿过植物细胞壁进入植物细胞,实现植物细胞的清晰成像。本文的主要研究内容及结果如下:首先,利用热裂解的方法合成系列的LiYF4:x%Er3+(x=10,20,50,80,100)纳米颗粒,颗粒的大小均为8 nm。通过对其光学性能的分析,我们证实了随着Er3+离子浓度的增加,纳米颗粒发生浓度猝灭的现象。通过引入Tm3+离子作为能量捕获中心可以减少能量迁移到晶粒内部缺陷位点的能量损失,LiErF4纳米颗粒650 nm处的发光强度明显增强。其次,为了钝化LiErF4上转换纳米颗粒表面的缺陷,进一步增强上转换发光,同时满足上转换纳米颗粒进入植物细胞,我们选择双锥形壳层的LiYF4进行包覆。双锥形的结构具有高的纵横比,可以较容易的穿过植物细胞的细胞壁进入细胞内。我们发现,包覆LiYF4壳层后的纳米颗粒在980 nm的激发下实现了超强红光的输出。红光位于生物窗口内,具有很强的组织穿透性,有利于植物细胞的成像。最后,我们将双锥形的LiErF4:Tm3+@LiYF4和球形的Na Gd F4:Yb3+,Er3+的上转换纳米颗粒在相同条件下进行表面处理后,浸泡洋葱表皮细胞。通过多光子激光扫描显微镜下可以看到,双锥形的LiErF4:Tm3+@LiYF4纳米颗粒更容易穿过细胞壁并进一步刺穿细胞膜,在洋葱细胞内的清晰成像,而球形的Na Gd F4:Yb3+,Er3+上转换纳米颗粒更多的聚集在植物壁间。该部分工作为探索上转换纳米粒子实现植物组织的高分辨率成像开辟了新的途径。
其他文献
高台阶排土场可以有效减少矿业占地,提高资源开发效率。排土场堆积体由粒径不一的宽级配废石料颗粒组成,而宽级配废石料在堆排过程中的颗粒分布呈现随机性和模糊性,且宽级配废石料的高台阶排土场具有明显的粒径分级,造成了高台阶排土场堆积体的各向异性和不均匀性。另外,鉴于现有粗粒料土工试验设备尺寸的限制,使得超大粒径的废石粗粒料在试验前需进行缩尺处理,从而产生明显的缩尺效应,导致难以获取排土场粗粒料合理的强度参
我国是铜消费大国,长期以来对外铜资源依存度较高,随着一直以来的不断开发利用,易选硫化铜矿石资源日渐枯竭,对氧化铜矿石特别是复杂难选氧化铜矿石的回收利用愈发重要。孔雀石及硅孔雀石作为为两种典型氧化铜矿石,关于它们的开发利用一直以来都是选矿工作者们的研究重点。作为典型的具有工业价值的氧化铜矿物,现阶段孔雀石的主要回收方法为硫化-黄药浮选法,但该方法仍存在着硫化效率低、对硫化剂用量要求严格、黄药消耗量大
多孔介质存在于人们生活的方方面面,作为一种传热强化材料,并且在保温、隔热、过滤等很多方面都有着显著的优势,但是由于多孔介质结构复杂,内部孔隙分布具有随机性,所以研究多孔介质内部传热过程相对困难。本文针对上述问题,通过分形理论与蒙特卡罗法来对多孔介质内部的结构进行模拟,能够很好地针对多孔介质这种复杂的结构进行建模。所以,分形理论和蒙特卡罗法对于研究多孔介质的传热问题有着重要的意义。主要研究内容如下:
纳米流体作为一种新型换热工质,由于具有较强的换热能力。在蓄热以及换热器等方面有着广泛的应用前景。而磁性纳米流体除了具有传统纳米流体的换热特性以外,还兼具顺磁性等特性,因此可通过改变磁场对磁纳米流体进行换热调控。由于换热集热领域,纳米流体的稳定性是限制其应用的主要原因之一。因此本文以水基Fe3O4磁性纳米流体作为研究对象,定性定量的分析了其稳定性,并从微观角度解释其稳定性机理。在稳定性基础上,通过实
滇东南都龙超大型锌锡矿床是我国第一大铟资源产地。目前,对其矿石中铟的赋存状态、分布规律及成形成制仍不清楚,限制了资源勘查评价和深度开发利用。本文在对都龙矿床进行了较充分地资料整理的基础上,系统开展了野外调查、采样及测试分析,对该矿床含铟矿石进行了详细的岩石学及和地球化学研究,主要取得了以下成果和认识:(1)都龙锌锡矿精矿化学分析结果表明,铟主要赋存于锌精矿和铜精矿中,而在铁硫精矿和锡精矿中的含量很
全球经济的飞速发展之下,是以远超预期的能源消耗为代价。在寻找新型能源替代的同时,提高现有能源的利用效率也备受关注,比如回收工业余热和储存空闲电能。热能是与人类的生活和社会生产息息相关的能源,因为大部分能量以热能形式被人们所消耗。作为最有前途的热能存储(TES)介质,相变材料(PCM)广泛用于热能存储系统,以达到提高利用效率的目的。当前,有机相变材料(OPCM)以其卓越的性能在热能存储领域具有诸多优
本文以安宁市坪子村排土场研究对象,该排土场为矿山拟建排土场,为明确降雨及地震作用是否会影响排土场的后期使用。对坪子村排土场在降雨及地震条件下,排土场内部渗流特性变化规律及降雨-地震耦合条件下边坡内部应力情况、位移变化情况及不同影响因素对排土场稳定性的敏感度展开研究;并以此确定不同工况、不同影响因素对排土场边坡稳定性的影响程度。首先根据坪子村现场具体情况,现场取样进行了相关的物理力学试验,确定排土场
本文是以工业废弃物黄磷炉渣为原料,采用湿化学法制备出不同掺杂量的Eu3+单掺杂和Eu3+、Ti4+共掺杂二氧化硅基荧光材料。利用SEM、XRD及F-4600荧光分光光度计对制备出的荧光材料的表面形貌、内部结构以及发光性能进行测试。以材料的荧光强度作为工艺指标,结合实验数据,对得到的数据进行了分析,得到了以下结论:首先,探究了黄磷炉渣浸出制备二氧化硅部分和氨基硅烷改性二氧化硅部分的最佳工艺条件。黄磷
近年来,伴随着矿山开采深度的逐年增加,充填采矿法,因其具有安全高效、绿色环保等优点获得了国内外大型地下矿山的广泛应用。在对矿体进行两步骤回采时,通常采用钻爆法施工,在爆破落矿过程中,临近矿岩矿柱的充填体常受到爆炸冲击荷载的扰动。在多次爆破开挖扰动下,充填体结构易出现片落,垮塌等现象,导致其强度及稳定性降低,从而影响矿柱安全高效的回采。因此,针对矿岩与充填体耦合条件下相互作用机理及变形演化规律的研究
随着科技的迅速发展,金属基纳米颗粒(Metallic Nanoparticles,MNPs)因其独特的物理化学性质被广泛应用于农业、化工、航天等各个领域。在使用的过程中这些MNPs可以通过大气循环、地表径流等方式进入到环境介质中,从而对生物及人类健康造成潜在威胁。随着粒径的减小,MNPs的比表面积增大、表面电荷密度增加、表面能增大,这些变化在很大程度上影响着MNPs的界面反应及其生物效应,MNPs