论文部分内容阅读
本文制备了几种适合近紫外光LED芯片激发的荧光粉。探索了最佳合成条件以及杂质的最佳浓度,分析了样品的晶体结构,研究了样品的发光性质。主要内容如下:
(1)利用高温固相法合成了荧光粉SrZnP2O7:Tb3+,并研究了样品的发光性质。发射光谱由六个发射峰组成,分别位于42Onm,442nm,492nm,545nm,584nm和620nm,对应于Tb3+的5D3→7F5,5D3→7F4,5D4→7F6,5D4→7F5,5D4→7F4和5D4→7F3的特征发射。激发光谱为从350到400nm的宽带,适合UVLED激发。研究了Tb3+掺杂浓度和电荷补偿剂Li+,Na+andK+对发光强度的影响,当Tb3+的最佳掺杂浓度是10%,电荷补偿剂为Li+时,样品的发光强度最大。SrZnP2O7:Tb3+有潜力作为适用于白光LED的绿色荧光粉。
(2)利用高温固相法合成了红色荧光粉SrZnP2O7:Eu3+,并研究了样品的发光性质。样品的最强激发峰位于400 nn,适合UVLED激发。在365nm激发下的发射光谱由位于591nm和597nm(5D0→7F1),616nm、624nm和629nm(5D0→7F2),656nm(5D0→7F3)及688nm(5D0→7F4)四组线状峰构成,为典型Eu3+的跃迁发射。研究了发光强度随Eu3+浓度变化情况,随着Eu3+浓度的增加未发现浓度猝灭现象,但存在猝灭趋势。并验证了Bi3+对Eu3+的敏化作用,讨论了Bi3+与Eu3+之间的能量传递。
(3)利用燃烧法合成了Srln2O4:Sm3+红色荧光粉,并研究了其发光性质。发射光谱由位于红橙区的3个主要荧光发射峰组成,峰值分别位于568、606和660nm,对应了Sm3+的4G5/2→6H5/2、4G5/2→6H7/2、和4G5/2→6H9/2特征跃迁发射,其中606nm的发射最强。激发峰分别位于323、413和476nm,说明该荧光粉既可以被紫外光LED芯片激发,又可以被蓝光LED芯片激发。研究了Sm3+浓度变化对样品发光强度的影响,当Sm3+的浓度为1.5%时,样品的发光强度最大。该荧光粉由许多微小的晶粒组成,晶粒的平均直径小于500 nm。