论文部分内容阅读
随着科学技术和工业生产的发展,对表面轮廓、几何尺寸、各种模具及自由曲面的测量工作越来越多,精度也要求越来越高。传统的机械接触式测量法(如探针式),由于存在测量力、测量时间长、需进行测头半径的补偿、不能测量较软质材料等局限性,为此,人们寻求能够克服上达缺陷的三维测量方法,非接触的光学投影式三维轮廓术正是在这一要求下出现的。 光学投影式三雏轮廓术有多种,其中,相位法三维测量轮廓术,简称相位测量轮廓术,是属于投影式光学投影式三维轮廓术的一种,它以其非接触、高速度、高精度、大数据量等一系列优点而日益受到人们的重视和研究,另外该方法还具有受环境电磁场影响小、工作距离大、可测量非金属面及较软质材料等特点。 相位测量轮廓术的测量对象主要是有表面散射特性的物体轮廓,其基本原理是“三角法”,在结构上使用了面状结构照明光,具体又可以分为莫尔轮廓术、时域相位轮廓术、空域相位轮廓术和傅立叶变换轮廓术。 本文的工作主要围绕时域相位轮廓术和傅立叶变换轮廓术两种最常用的轮廓术进行的,所做的工作及成果大致可分为理论分析与实际应用两部分。 首先深入分析了傅立叶轮廓术和时域移相位轮廓术的基本原理,系统全面地阐述了影响两种轮廓术测量精度的的误差因素。进行了如下三方面工作: (1)针对相位的求解,提出了基于微分算法原理的相位求解新方法,并将其成功应用于傅立叶轮廓术和时域相位轮廓术中;其次,针对解包裹时遇到的物体阴影缺陷,提出了在相位求解过程中用物体灰度图来消除阴影带来误差的新思路,并用实验验证。 (2)针对傅立叶轮廓术中特有的漏频、混频和栅栏效应,系统的阐述了误差的消除方法,并提出采用行凯泽—贝赛尔加权可以更加简单方便的消除漏频效应;然后分析了CCD的非线性效应和积分抽样效应所造成的测量误差,并提出了相应的解决措施;另外,在消噪上,首次将小波理论应用于三维轮廓测量中,计算机仿真表明小波消噪优于频域消噪方法。 (3)分析了采用相位测量轮廓术做为测量荫罩三维轮廓的可行性,建立了基于时域相位测量轮廓术的实验测量系统,完成了对大物体测量的图像无缝拼接算法,然后对标准物体及荫罩进行了实测,测量结果基本满意,基本实现了荫罩的非接触三维轮廓测量功能。最后本文对实验系统的误差进行了详细的分析并提出了一些解决的方法。