开放费米子系统的随机运动方程方法

来源 :中国科学技术大学 | 被引量 : 0次 | 上传用户:whisperings
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Quantum impurity system(QIS)is one of the fundamental problems in theoriti-cal physics,where system properties depend on the strong e-e interactions among localized impurities.Correct characterization of QIS leads us to understand the mechanism of strong electron correlation.However,this has remained rather a chal-lenging problem because such an impurity has internal degrees of freedom(intrinsic angular momentum or spin)which interacts with the surrounding electrons.As a result,it becomes a challenging many body problem.In the last three decades,different types of techniques have been established to achieve an accurate characterization of QIS.Despite the success of these methods,the feasibility of these methods has been restricted by their limited efficiency and correctness.Moreover,the applicability of these methods is limited to few basic models because with an increase in the system size,the numerical complexity of these methods also increases.As a result,it is difficult to generalize these methods to more complex models.Consequently,a universal and more efficient method is needed to accurately address strong correlation effects in general quantum impurity systems.In this thesis,we present the quantum dissipative theory(QDT)to theoretically address QIS.In QDT,the whole model is usually divided into two parts,the impu-rity is regarded as a system and the surrounding environment is treated as a bath or reservoir which usually possesses infinite degrees of freedom.Thanks to path-integral formulation,the influence of the bath on the system can be captured in few stochastic auxiliary fields.In the case of bosonic bath,these auxiliary fields are realized by c-numbers which can be represented by conventional means.Unlike bosonic baths,the auxiliary fields for fermionic baths are realized by Grassmann numbers,which mutually anti-commute.Grassmann numbers can not be repre-sented by conventional means.This difficulty restricted the early attempts to only formal derivations without any promising feasible numerical simulations.Recently,our research group proposed a mapping scheme where Grassmann numbers can be mapped into c numbers(white noises)and some pseudo ladder operators.This map-ping scheme results in a very feasible and accurate stochastic equation of motion(SEOM)for the reduced dynamics of a system connected to a fermionic bath.In this thesis,we are presenting a very detail numerical and technical discussion on the whole formalism including thorough explanation of the mapping of Grassmann numbers into c-numbers.Moreover various key quantities,i.e.,electron occupation number and the current flow from the system into the attached reservoirs are also calculated.This thesis can be divided into three major parts.The first part is an introduc-tion to stochastic formalism.It covers the construction of stochastic theory for the system connected to a bosonic bath.Furthermore,it also includes a section on the numerical treatment of stochastic differential equations.In addition,it introduces us to Grassmann algebra and Complex algebra.The second part of the thesis is related to the construction of stochastic formalism for a system connected to a fermionic bath.The third part belongs to the numerical treatment and results.This thesis consists of three chapters and detail about each chapter is given below.Chapter 1 is an introductory chapter.It introduces the reader to open quantum system and quantum dissipative theory(QDT).The chapter starts with the discus-sion on Brownian motion and leads us to Einstein s Brownian motion theory and Langevin’s stochastic approach.As Langevin’s approach has its own limitations and can not be generalized to open quantum dynamics,in this chapter,we show that Feynman-Vernon integral formulation can be used to successfully decouple system from the bosonic bath.Feynmann-Vernon decoupling technique results in a very useful stochastic differential equation(SDE)for the reduced dynamics of the system.After all the introduction and derivations,the numerical treatment of SDEs is done in detail.As the considered SDE contains color noises,we present different meth-ods along with explicit algorithms for the generation of color noises.Moreover,the chapter covers a section on the correspondence between deterministic hierarchical equations of motion(HEOM)and stochastic equation of motion.At the end,the chapter introduce us to complex algebra and Grassmann algebra.In chapter 2,we derive a stochastic equation of motion for the dissipative dynam-ics of a system connected to a fermionic bath.The many body effects are taken into account by using Grassmann random fields.Since Grassmann numbers are nu-merically unfeasible,we map them into feasible c-numbers and some pseudo ladder operators which belong to an auxiliary space.The mapping is incomplete but still the resultant SDE can do exact characterization of non-interacting systems and can give approximate results for the interacting systems.Chapter 3 covers a detail numerical and technical discussion on stochastic equation of motion derived in chapter 2.In this chapter,we present explicit algorithms for the numerical representation of the system and reservoir operators.The applicability of SEOM is demonstrated on the two level system at both high and low temperatures along with benchmark results for the various key quantities,i.e.,electron occupation number and the current flow from the system into attached reservoirs.Moreover,we include a detail discussion on the numerical stability and convergence of our SEOM.Chapter 4 is devoted to thesis conclusion and perspective.
其他文献
等离子体中湍流会造成横越磁场的粒子输运,破坏托卡马克装置中磁场对粒子的约束,从而影响热核聚变的持续燃烧和破坏装置自身。离子温度梯度模(ITG)和捕获电子模(TEM)湍流被认为是两种非常重要的等离子体湍流。DⅢ-D托卡马克装置在两次放电实验#142358和#142371中分别发现ITG湍流和TEM湍流,且湍流自关联长度,电子相对密度涨落强度和湍流驱动的高能粒子输运在两次实验中基本相同。后一次放电过程
黑臭河道已经成为环境污染重点问题,已有治理方法消耗成本较高,部分试剂还会造成二次污染,整体治理效果较差。为了满足可持续发展理念,提出生态设计理念在黑臭河道治理中的应用研究。深入探究黑臭河道的影响因子,明确黑臭河道治理目标,引入生态设计理念,搭建黑臭河道治理框架,并以此为基础,设计生态治理技术——食藻虫训化技术、“水下森林”营建技术、生态浮岛构建技术与曝气复氧技术,通过上述生态治理技术的应用,即可实
新时代背景条件下,新乡贤逐渐成为推动乡村振兴的重要因素。与此同时,社会各界对新乡贤的德行、政治素养与知识文化等要求逐渐提升。新乡贤是实现乡村振兴的重要桥梁,为了充分发挥新乡贤群体的作用,助力乡村振兴,分析了新乡贤助力乡村振兴面临的困境,提出了新乡贤助力乡村振兴发展的措施。
§16 三色问题 三色问题之有助于四色问题者乃是极大平面图的三色问题。因为实际上四色问题只需研究那些非3-可着色的极大平面图。可喜的是这点已得到完满解决。然,一般平面图的3-可着色的判定确非那样容易。本节着重于后者。 命题16.1 极大平面图3-可着色,当且仅当所有节点的次皆偶数。 证明 由推论8.2的对偶形式和推论8.1即得。 定理16.1 任何平面图4-可着色,当且仅当非Euler极大
期刊
1982年ASDEX(德国)装置上第一次获得高约束(H)模式,这一发现成为了整个托卡马克研究中具有划时代意义的突破。H模约束因为其具有相对较高的能量和粒子约束水平以及良好的稳定可重复性,被选为ITER的基本参考运行模式。而边界局域模(ELM)作为H模中最重要的特征之一,由于其带来的严重热负荷问题目前并未得到很好的解决,所以对于ELM的控制方法研究一直都是国际托卡马克研究的热点问题之一。本论文主要依
低维纳米材料因其丰富的物理化学性质引起了工业界和学术界广泛的关注,本文基于Mo2C,InSb,和InP3材料,从一维纳米管,二维纳米片材料考察其在材料电子学,自旋电子学,力学以及催化反应方面的应用。全文共分成五个部分,第一个部分是密度泛函理论简介,第二部分考察单壁Mo2C纳米管磁性和电子学性质的第一性原理研究,第三部分是提出来一种类似于磷烯结构的单层InP3,其具有潜在的析氢反应性能,第四部分是关
学位
孔子曰:"学而不思则罔,思而不学则殆。"这位春秋时期的教育家、思想家、政治家以辩证的眼光深刻阐述了学习和思考的密切联系。哲人康德说过,感性无知性则盲,知性无感性则空。与孔子的这句"学而不思则罔,思而不学则殆"可以说是如出一辙,观点惊人的一致。可见人类在知识的认知和获取上,是不分地域、种族差异的,其根本性的原则往往是一致的。《习近平总书记的成长之路》和《习近平的七年知青岁月》,让广大党员干部进
期刊
随着经济社会快速发展,以物联网、大数据、5G为代表的信息化技术得到进一步的应用和推广,城市发展面临新的变革,智慧、生态、共享、协调等理念不断叠加融合,对传统产业园区在智慧城市建设背景下的转型发展产生极大影响。文章介绍我国产业园区的发展历程与发展痛点,结合当前智慧园区主流规划设计思路,探讨智慧城市建设背景下的智慧园区规划设计要点,以期提高智慧园区规划设计水平,促进传统产业园区向智慧园区转型升级。
3月6日,习近平总书记在看望参加全国政协十三届五次会议的农业界、社会福利和社会保障界委员时强调,要在推动社会保障事业高质量发展上持续用力,织密社会保障安全网,为人民生活安康托底。习近平总书记的重要讲话站在党和国家事业发展全局的高度,彰显了以人民为中心的发展思想,内涵丰富、立意高远,饱含深情、催人奋进,为进一步推动我国社会救助事业发展指明了前进方向、提供了根本遵循。
期刊