【摘 要】
:
Al2O3陶瓷材料具有高熔点、低密度、抗氧化和耐腐蚀等特点,在大推重比航空发动机热端部件制造等方面具有广阔的应用前景。直接激光沉积成形技术是一种基于同步送料的直接能量沉积增材制造技术,可实现近净尺寸陶瓷结构件的快速制备,具有工艺简单、生产周期短等优点。但由于凝固缺陷的存在,直接激光沉积Al2O3陶瓷目前存在弯曲强度低的问题,限制了其在更多领域的进一步应用和发展。针对这一问题,本课题提出通过后续高温
论文部分内容阅读
Al2O3陶瓷材料具有高熔点、低密度、抗氧化和耐腐蚀等特点,在大推重比航空发动机热端部件制造等方面具有广阔的应用前景。直接激光沉积成形技术是一种基于同步送料的直接能量沉积增材制造技术,可实现近净尺寸陶瓷结构件的快速制备,具有工艺简单、生产周期短等优点。但由于凝固缺陷的存在,直接激光沉积Al2O3陶瓷目前存在弯曲强度低的问题,限制了其在更多领域的进一步应用和发展。针对这一问题,本课题提出通过后续高温热处理工艺提高直接激光沉积Al2O3陶瓷结构件弯曲强度的方法,对高温热处理前后样件的微观组织、宏观形貌及力学性能进行检测,对比分析高温热处理工艺对Al2O3陶瓷的影响机制以及Al2O3陶瓷力学性能与高温热处理工艺参数之间的规律性。主要研究内容及结论如下:(1)直接激光沉积成形Al2O3陶瓷样件的晶粒间含有薄膜状二维组织和狭长的沟壑状孔隙缺陷,晶粒表面为台阶状。Al2O3陶瓷的硬度为1878 HV,断裂韧性为2.85MPa·m1/2,弯曲强度为270 MPa,物相组成为α-Al2O3相。(2)Al2O3陶瓷样件分别完成热处理温度和热处理时间高温热处理实验后,进行微观组织检测。研究发现,随着热处理温度的增加,薄膜状二维组织逐渐消失,晶粒表面台阶也随之消失,沟壑状孔隙逐渐愈合变为线条状气孔。样件表面晶界内的杂质随热处理温度的提高逐渐熔化蒸发,晶界由断续成线的气孔逐渐变为连续完整的线条显现出来。随着热处理时间增加,沟壑状孔隙变为线条状,其尺寸逐渐减小;样件表面的晶界深度也逐渐增加。高温热处理后Al2O3陶瓷样件的物相组成没有改变,仍为α-Al2O3相。(3)Al2O3陶瓷样件分别完成热处理温度和热处理时间高温热处理实验后,进行宏观形貌和力学性能检测。研究发现,高温热处理后Al2O3陶瓷样件的质量、尺寸和粗糙度均未发生明显改变。在力学性能方面,Al2O3陶瓷的硬度和断裂韧性也未出现明显的变化,弯曲强度出现了明显的提高。Al2O3陶瓷的弯曲强度随热处理温度提高而不断增大,在1600℃高温热处理后时,弯曲强度达到494 MPa,增幅82.96%;Al2O3陶瓷的弯曲强度随热处理时间增加出现先升后降的现象,在15 h高温热处理后,弯曲强度达到548 MPa,增幅102.96%。
其他文献
超音速武器、新型战斗机等高速飞行器是航空航天领域的高端装备,为保证使役性能,飞行器在各种速域、姿态时的气动力特性必须被准确评估。风洞试验是获取高速飞行器气动力数据的重要手段。但随着风洞试验飞行器模型的不断增大,传统试验方法的局限性也在日益显露,因此急需寻求一种针对大尺寸飞行器模型的气动六维力测试方法。对于大尺寸飞行器模型,其测试空间受限,基于常规支撑装置与测量方法难以满足风洞试验的尺寸与动态特性要
喷丸成形作为机翼壁板首选加工方法具有无模成形、成形精度高、提高疲劳性能等诸多优点,但其在表面产生的弹坑过大则容易造成应力集中和粗糙度增加,恶化表面性能。超声强化可以对喷丸成形壁板进行精密校形,喷丸强化后进行超声强化可以进一步提高疲劳性能且对粗糙度的影响相对较小。如何量化这些喷丸工艺对于疲劳性能的影响并得出复合工艺中的最优参数成了飞机壁板喷丸加工处理中亟需解决的问题。本文采用喷丸成形、喷丸强化、超声
随着我国航空航天事业的发展,对舱体类设备的可靠性提出了更高的要求。舱体设备内部多余物颗粒的存在导致系统故障频发,造成了严重的航天事故和经济损失。因此本文借鉴基于颗粒碰撞噪声检测(PIND)的密封电子设备多余物检测方法,针对舱体设备内部多余物检测问题展开研究,旨在确定多余物PIND检测的试验条件和各因素影响规律,实现不同材质和粒径多余物的识别分类。针对形状尺寸更大的舱体设备,传统沿轴线转动舱体的人工
以深空探测、空间站为代表的航天任务对大型航天器具有迫切需求。大型航天器舱体作为其关键构件,可为一系列舱外关键载荷提供支撑结构。因此,舱外载荷支架的制造精度将直接影响航天器的服役性能。为保证支架加工精度,需在整舱状态下对大尺寸航天器舱体支架安装形面及位置特征进行精准测量。而大型航天器几何尺寸大,载荷支架数量多、几何结构复杂、且分布跨尺度,实现载荷支架安装面的高精、高效、高可靠测量极具难度。本文提出一
气速测量在化工、航空航天等各个领域都起着重要的作用,在高校与科研院所的实验中,气流速度也是需要关注与研究的重要参数。因此,对气流速度的准确测量有着重要意义。目前,五孔探针技术与总温探针技术都有一定的发展,但将两者结合而成的复合探针并没有深入研究,且关于五孔探针的研究主要集中在亚声速理想气体范围内。因此为了更准确、方便地对流场情况进行测量,本文利用五孔探针与总温探针结合的复合探针,通过实验测量与三维
TC17钛合金因其具有高强度、高韧性以及高淬透性被称为“三高钛合金”,广泛应用于制造航空发动机压气机叶片和叶盘等部件,进一步提高抗疲劳性能将有力促进其在航空航天领域的应用与发展。表面喷丸强化处理能够有效地提升零部件的表面完整性,被广泛应用于提高金属零部件的抗疲劳性能。本文采用激光共聚焦显微镜、扫描电镜、X射线衍射仪、维氏硬度仪和旋弯疲劳试验机等仪器设备,针对经干、湿喷丸强化处理后的TC17钛合金板
钛合金具有比强度高、热强性好等优点,随着飞机发展的轻量化要求,钛合金型材弯曲零件越来越多地应用于飞机中,然而钛合金在室温条件下塑性较差,成形困难,因此多采用热拉弯工艺。伴随飞机装配精度越来越高,对型材零部件的成形精度提出了更高的要求。近年来,热拉弯蠕变成形工艺成为实现钛合金型材高精确成形的重要技术。本文利用有限元软件针对钛合金L型材建立高温弯曲蠕变模型、热拉弯有限元模型及热拉弯蠕变模型,为钛合金热
目前运载火箭技术有效载荷偏低,在火箭发动机功率无法大幅提高的现状下,航天运载器减重迫在眉睫。推进器系统占运载火箭总重的60%-70%,液氧贮箱是推进剂系统的必备贮箱,通用性强,其结构减重意义重大。碳纤维增强树脂基复合材料由于具有高的比强度、比模量,成为火箭减重的首选材料。本文针对复合材料液氧贮箱应用中面临的低温渗透失效和液氧不相容两大致命问题,立足本征高韧、阻燃的杂萘联苯聚芳醚热塑性树脂,开发航天
航空航天、电子信息以及国防工业等领域的高端装备中,存在一类具有特定电磁性能的透波构件。此类构件可以保证雷达天线的通讯、制导等正常工作,一般具有复杂的廓形。插入相位移(insert phase delay,IPD)是评价复杂型面透波构件生产是否满足要求的综合评判指标之一,现阶段主要受限于材料成型和加工工艺水平,多采用修磨的方式调整几何厚度来修正补偿构件IPD误差。一方面,透波构件IPD逐点精密测量可
碳纤维增强树脂基复合材料(Carbon Fiber Reinforced Plastic,CFRP)具有高比强度、高比模量、耐腐蚀、耐疲劳等优点,在航空航天等领域广泛应用。由于服役环境普遍存在湿、热影响,材料易发生湿热老化,成为结构性能退化的主要形式之一。目前关于CFRP湿热老化评价多限于实验室有损方法,主流标准ASTM D5229、HB 7401-1996等均以小试样质量变化为评价指标,对结构件