论文部分内容阅读
硅基光电子是信息技术发展的重要方向之一,与大规模集成电路工艺相兼容的高效硅基光源已成为硅基光电子集成亟待解决的问题。由于体硅是间接带隙半导体,其发光效率很低。因此,在过去的十多年间,研究者开发了多种技术希望解决这一关键问题。在众多的解决方案中,掺铒硅基材料由于铒离子在1540 nm处的发光正好对应于石英光纤的最低损耗窗口,从而得到了广泛的关注。但是铒离子的激发截面较小,且在大部分硅基材料中的掺杂浓度较低,因此如何实现铒离子的高效发光是该方向研究中的关键问题,而将硅酸铒材料与敏化剂结合起来是解决铒离子高效发光的重要途径。本文系统地研究了硅酸铒的制备,晶型转变,不同晶型的晶体结构、发光性能,以及硅酸铒的敏化发光过程,取得了如下主要创新结果:(1)成功制备了具有不同晶型的硅酸铒薄膜,并在研究中发现了硅基薄膜中铒硅成分比例、热处理温度、热处理气氛对硅酸铒结晶及晶型转变的影响规律。实验指出,高浓度铒掺杂的氧化硅薄膜中硅酸铒的结晶温度约为1000℃。当薄膜中的铒硅成分比接近1:1时,形成的硅酸铒从低温到高温的晶型转变过程为由y-ErSi2O7转变为α-Er2Si2O7,再到β-Er2Si2O7。当薄膜中的铒硅成分比接近2:1时,形成的硅酸铒从低温到高温的晶型转变过程则为由X1-Er2SiO5转变为α-Er2Si2O7,再到β-Er2Si2O7。但是,薄膜成分偏离硅酸铒的化学计量比或在氧气气氛下热处理都会提高硅酸铒的晶型转变温度并减小薄膜中硅酸铒晶粒的尺寸。(2)研究指出了不同晶型的硅酸铒具有不同的发光性能,并在硅酸铒不同晶型的发光性能及其晶体结构信息之间建立起了可对应的联系,包括谱线位置、发光效率、发光寿命及温度淬灭效应。其中发光效率最高、发光寿命最长的是y-Er2Si2O7,其次是α-Er2Si2O7与β-Er2 Si2O7,发光寿命最短的是X1-Er2SiO5。另外,v-Er2Si2O7的温度淬灭效应明显低于α-Er2Si2O7。经过计算,y-Er2Si2O7、α-Er2Si2O7、β-Er2Si2O7、X1-Er2SiO5中的铒离子发光寿命-密度乘积比为3.1:1.5:1.3:1.2,该值的大小也代表了材料在1540 nm处的光放大能力。研究还指出,y-Er2Si2O7之所以拥有最高的发光效率、最长的发光寿命以及最低的温度淬灭效应,是因为其较大的光学活性铒离子数量、较大的铒离子间距与较好的对称性以及较强的Er-O键。(3)成功制备了非晶硅团簇与硅酸铒共镶嵌的氧化硅薄膜,并在研究中发现了纳米硅的形成受限于硅酸铒的结晶的规律。在热处理温度较低时,富硅硅酸铒薄膜中会析出大量硅纳米晶,但是当温度升高至接近硅酸铒的结晶温度时,硅纳米晶消失,硅酸铒结晶,从而形成了非晶硅团簇镶嵌的硅酸铒薄膜。若将热处理时间进一步延长,非晶硅团簇中仍然无法形成硅纳米晶,这主要是由于非晶硅团簇中硅纳米晶的形核受到了包覆其外的硅酸铒晶体与非晶硅界面的严重影响,使其形核功大大增加。(4)研究发现富硅硅酸铒薄膜中硅酸铒的敏化发光主要来源于薄膜中的非晶硅团簇及发光中心的敏化作用。热处理后,在非晶硅团簇镶嵌的硅酸铒薄膜中得到了硅酸铒的敏化发光,主要敏化剂为薄膜中的非晶硅团簇及发光中心。为了提高硅酸铒的敏化发光效果,实验利用新的两步热处理的方法,同时优化富硅硅酸铒薄膜的微结构、晶体质量、晶型组成以及敏化剂浓度等参数,并在经过1000℃30 min+1100℃30 min热处理的样品中得到了最佳的敏化发光强度。