论文部分内容阅读
经济发展和公路网的大规模建设促进了汽车行业的快速发展,汽车的类型、数量逐年激增,车速和载重量也显著提高,汽车动荷载造成的路面破坏和地基沉陷愈加严重。路面破坏和地基沉陷则进一步加剧了汽车、路面及地基在行车过程中的振动,汽车-路面-地基之间的相互作用力增大,从而造成的路面损伤、行车平顺性和环境振动等问题越来越突出。将汽车-路面-地基作为完整系统进行动力分析,即可反映地基特性对系统振动的影响,也能反映路面状况和汽车参数对系统振动的影响,可真实的揭示汽车-路面-地基之间的动力相互作用,也能获得振动在地基中的传播及衰减规律,从而准确预测行车振动对环境的影响。因此,进行汽车-路面-地基耦合振动的动力学研究,对于路基路面的结构设计、行车安全性、舒适型以及环境振动的预测评估都具有重要意义,在提高工程质量和改善国民生活质量方面具有较高的经济和社会效益。本文从天然地基的实际出发,将地基考虑为由饱和-非饱和土成层土体构成,水位线以上为非饱和土,水位线以下为饱和土。基于连续介质力学和多相孔隙介质理论,分别采用Biot固-液两相介质和固-液-气三相介质描述饱和土和非饱和土,构建饱和-非饱和土成层地基的三维动力模型,并利用边界和交界面连续条件对饱和土和非饱和土动力控制方程进行耦合求解,进而分析成层地基的振动特性。在此基础上,在地基顶面增加路面和汽车系统,进一步建立汽车-路面-地基的多体系统耦合振动模型,并对耦合系统进行耦合求解,研究汽车-路面-地基的耦合振动特性。具体工作如下:(1)在柱坐标系下建立饱和-非饱和土成层地基的三维轴对称模型,利用Hankel积分变换进行求解,得出简谐荷载作用下地基系统稳态振动的解析解,通过编程计算对成层地基的频域响应进行研究。研究发现,激振频率越小,地基振幅越大;激振频率越大,则振幅越小;当频率趋于无穷时,振幅收敛于某一恒定值,该收敛值取决于地基土体的性质;位移和孔压在土层交界面处出现反弹激增现象,位移的激增现象更为明显,上覆非饱和土层越薄,激增幅度越大。(2)基于饱和-非饱和土成层地基模型,利用符号函数将移动荷载描述为时间和空间的解析函数,并将荷载函数代入地基模型进行联立求解,利用Fourier-Laplace联合变换推导出点源、线源和面源荷载激励下地基振动响应的解析解。通过分析地基振动响应的时程曲线和频谱曲线发现,荷载移动速度越大则振幅越小,频谱曲线波动越明显,峰值频率数目增多,振幅在频域内的变化越剧烈;荷载分布区域越大则振幅也越大,最大振幅出现在荷载作用区的边缘;频谱曲线的波动随荷载分布区域的增大而变得愈加剧烈;振幅沿纵、横向的分布和衰减不一致,振动沿纵向衰减缓慢,传播更远。(3)在饱和-非饱和土成层地基顶面进一步添加路面和汽车系统,进行汽车-路面-地基全系统耦合振动分析。采用无限长Euler梁模拟路面,功率谱密度(PSD)描述路面不平度。分别采用两自由度1/4汽车模型和九自由度整车模型模拟汽车,利用弹性滚子接触模型描述汽车轮胎与路面的动态接触。通过对汽车-路面-地基系统的控制方程进行耦合求解,推导出系统耦合振动的响应解。通过计算发现,汽车行驶速度对地基振幅和频率的影响与移动荷载一致;路面不平度对振幅和频率的的影响程度最为明显,路面越不平顺,地基振幅越大,频率波动越剧烈;在较低车速时,轮胎充气压力对振幅造成影响,但对频率影响甚微;考虑多轴、多轮组汽车时,地基振动发生叠加效应,行车速度和路面等级不仅影响频谱曲线的波动形态,而且影响频域分布宽度,车速越大、路面越不平顺,则频谱曲线波动越剧烈,频域分布越宽。本文通过建立一系列理论分析模型,由简单到复杂,由单体系统到多体系统,分梯次将振源和力学模型逐步深化,系统分析了汽车-路面-地基耦合振动的频域响应和时域响应,以及各子系统之间动力相互作用的机理。该项工作在理论上丰富了多体系统耦合振动的理论计算方法,为路基路面结构的优化设计提供指导,为车致环境振动的预测评估提供了科学依据。