计算有表面活性剂二相流及其相关问题的水平集方法的研究

来源 :湘潭大学 | 被引量 : 0次 | 上传用户:wyy_9715072
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
半拉格朗日(半拉氏)方法没有CFL稳定性条件限制且比欧拉方法更加稳定。在文献当中,水平集重新初始化方程的半拉氏方法是复杂的,这是没有必要的。因为重新初始化过程是辅助的,我们提出了耦合有改善紧邻交界面网格点处精度的投影技术的一阶半拉氏格式。标准的二阶半拉氏格式被用于推进水平集对流方程。实现是简单的,包括在块结构自适应网格上。半拉氏方法的有效性通过大量的数值算例被证实,其中包括在给定速度场中做被动对流的有顶点/小节/大变形的交界面、有拓扑变化的几何流及二相不可压缩流中气泡/液滴动力学仿真。就精度而言,它与其它方法是可比的。离散曲面对流扩散方程的新的半拉氏格式被提出。其它被包含的方程也使用半拉氏格式求解,其中包括水平集对流方程、重新初始化方程及延拓方程。半拉氏方法移除了 CFL稳定性限制和表面拉普拉斯算子引起的刚性,从而允许取比欧拉方法更大的时间步长。该方法被推广到块结构自适应网格。数值算例被给出用于证实半拉氏方法的有效性。在文献[1]基础上,有可溶解表面活性剂二相流的水平集方法被提出。使用扩散区域方法的思想,定义在母液所占有区域上的母液体中表面活性剂浓度的对流扩散方程被重写为分布形式。导出的方程使用一个修正的Crank-Nicolson格式来离散。基于水平函数,相关的表面狄拉克delta函数和指示函数被近似。确保表面活性剂守恒的简单策略被给出。该方法的收敛性被数值地验证。二维情形中浮力驱动下液滴上升和三维剪切流中液滴破裂及两个液滴的互相影响的数值仿真表明表面活性剂在二相流中扮演了重要的角色。
其他文献
大量研究表明具有非局部特性的分数阶微分算子非常适用于描述具有记忆特性和遗传性质的材料.因此,近年来分数阶微分方程得到了广泛的关注和应用.然而很多分数阶微分方程的解析解是很难得到的,于是在实际应用中数值模拟成为研究分数阶微分方程的一个重要手段.本文致力于二维Riesz空间分数阶扩散方程及分数阶Sine-Gordon方程的有效数值格式及快速算法的研究.第二章中,采用ADI-CN格式将二维Riesz空间
Allen-Cahn方程作为描述相场模型最基本的方程之一,是用于模拟在一定温度下二元合金相位分离的模型。Allen-Cahn方程在实际问题中的应用非常广泛,如晶体生长、相变、图像分析、晶粒生长、材料科学中的界面动力学等。而且在实际问题中复杂的Allen-Cahn方程不易求得精确解,故而,如何数值求解该方程就变得尤为重要。在第三章中,为了数值求解Allen-Cahn方程,我们采用了线性元对其进行空间
Poisson-Nernst-Planck(PNP)方程是由Poisson方程和Nernst-Planck方程组合而成的强耦合非线性偏微分方程组.此类方程广泛用于描述生物化学的静电扩散反应过程、半导体的离子输运以及生物细胞膜间的离子转换等应用领域.有限元方法是求解PNP方程的一种流行离散化方法,因此,研究PNP方程的有限元误差估计及其快速算法具有重要的理论意义与实际应用价值.本文主要开展了以下三个
分数阶微积分在生物学、生态学、力学、材料学及控制系统等领域中起着越来越重要的作用。本文主要研究空间分数阶Klein-Gordon-Schr(?)dinger(KGS)方程组的守恒差分格式、Fourier谱格式,空间分数阶Schr(?)dinger方程的辛差分格式,及一类两边分数阶扩散方程的谱配置方法。在第二章,给出一些符号和分数阶算子的定义以及文中需要的一些引理。在第三章,首先给出带低次Yukaw
铁电薄膜因其优越的性能越来越受到大家的关注。利用铁电薄膜制作的电子元器件,工作在辐射环境中时会受到辐照的影响而导致性能下降。当器件工作在航天、航空等领域时,由于在航空和航天环境中包含不同的高能射线粒子,这些射线会对工作在其中的电子系统、电子元器件等产生各种损伤效应,最终导致航天器出现功能失效、甚至会发生航天器坠毁,所以要求电子器件拥有较强的抗辐射性能。铁电抗辐射性能研究,目前主要集中在宏观性能随着
多铁材料同时具有铁弹、铁电、铁磁等多种序参量,且这些序参量通过耦合能够产生一些新的效应,比如磁电耦合效应,使得其在传感器、多态存储、自旋电子器件等领域具有广阔的应用前景。对于多铁纳米材料,它不仅能在纳米尺度上呈现出磁电耦合效应,更能促进器件实现多功能化、集成化和微型化,近年来受到广泛的关注和研究。对纳米尺度多铁材料的力电磁耦合行为进行研究,不但可以加深对多铁材料复杂的物理和力学现象的理解,而且能为
铁电材料是一种功能材料,其具有的优异电学和光学性能孕育出了它广阔的应用前景。电畴翻转是铁电材料显示宏观非线性本构行为的微观物理机制,铁电畴的取向直接决定着铁电材料的物理性质和应用方向,而电畴翻转后不同取向铁电畴体积分数的变化则直接与铁电材料及其器件的效率和稳定性挂钩。因此,确定铁电材料的畴取向及其体积分数(分布特性)对铁电器件工程至关重要。多铁性材料作为一种特殊的铁电材料,除具有铁电性外,还兼具有
软件定义网络(Software-Defined Networking,SDN)是一种新型网络体系结构,它实现了网络设备中控制逻辑与数据转发功能的分离,采用集中式的控制方式控制整个网络,并向上层应用提供开放的可编程接口。这种设计模式极大地简化了网络策略的部署,缩短了网络应用的开发周期,在数据中心和云计算中得到了广泛的应用。但是,这种网络体系结构也引入了新的安全威胁。本文将对SDN体系结构中的若干安全
热障涂层(Thermal Barrier Coatings,TBCs)因为耐高温、高隔热、抗腐蚀等优异性能,已成为航空发动机涡轮叶片等热端部件不可缺少的热防护材料。然而,在含有杂质颗粒的高温、高速燃气环境下服役时,会因为界面氧化、颗粒冲蚀、CMAS腐蚀(钙镁铝硅等金属氧化物的混合物,简称CMAS)等多种因素导致涂层剥落。其中,CMAS腐蚀指高温下钙镁铝硅混合氧化物熔融、渗透到涂层中,引起涂层结构、
本文利用谱配置方法求解一类带弱奇异核的和非线性的Volterra型积分微分方程,并且构造高精度算法,着重分析该方法的误差估计和收敛性,并进行数值实验,验证所给方法的有效性。第二章,用Legendre谱配置方法对非线性Volterra-Fredholm-Hammerstein积分方程进行求解。并且对于所给的数值格式和误差进行了分析,即当核函数充分光滑时,计算所得数值格式的L2范数和L∞范数误差呈指数