论文部分内容阅读
抗磨添加剂是润滑油添加剂中最重要的添加剂之一,如何使之达到最大程度地减小摩擦和磨损是摩擦学领域的主要研究内容之一。同时,为了改善传统抗磨添加剂由于含有硫酸盐灰分、磷、硫等物质所造成的环境污染问题,开发一种新型绿色抗磨添加剂来代替和部分代替传统抗磨添加剂,已成为目前亟需解决的问题之一。轻基硅酸镁(magnesium silicate hydroxide,MSH)作为天然蛇纹石矿物质的主要成分,具有由Si-O四面体和Mg-O/OH八面体构成的独特层状结构,作为润滑油抗磨添加剂,其可在摩擦剪切力、瞬间高压和高温条件下发生分解,释放不饱和Si-O-Si、O-Si-O、OH-Mg-OH(O)、OH-和O-H-O等基团,从而与摩擦基体表面发生物理和/或化学反应生成摩擦膜,减小摩擦和磨损。然而,目前MSH通常通过机械球磨蛇纹石矿物质来获得,这不可避免地带来以下几个问题:一是天然蛇纹石矿物质含有Al2O3、FeO、GaO和MnO等杂质,导致研究人员无法制备得到纯净的MSH;二是天然矿物质具有地域差异性,通过蛇纹石获得的MSH性能根据所处地域的不同而不同;最后,矿物质经过机械球磨通常只可达到微米级别大小,从而限制了 MSH在纳米添加剂领域的应用。为了解决以上问题,本研究首先选用MgO和Si02为反应前驱物,NaOH碱性水溶液为反应介质,通过高温高压反应釜设置温度、压力、时间和搅拌速度等参数,经过一系列后续处理工艺,制备得到具有不同微观形貌结构的MSH纳米材料,在此基础上探究其作为润滑油添加剂的摩擦学性能。除此之外,鉴于碳纳米材料在摩擦学领域的广泛研究和应用,本研究将碳基物质与MSH纳米材料相结合,选用MgO、Si02和石墨作为前驱物,同样采用水热合成法制备得到MSH/C复合纳米材料,借此尝试进一步提高MSH纳米材料的减摩抗磨性能。另外需要提及的一点是,因MSH/C复合纳米材料中碳元素以包覆于MSH外表面的多层碳-碳六元环形式存在,其在石墨烯的制备领域具有重要的研究意义。本研究采用扫描电子显微镜(scanning electron microscopy,SEM)、透射电子显微镜(transmission electron microscopy,TEM)、X 射线能谱仪(energy dispersive spectroscopy,EDS)、X 射线衍射仪(X-ray diffraction,XRD)、X 射线光电子能谱分析(X-ray photoelectron spectroscopy,XPS)、X 射线荧光光谱仪(X-ray fluorescence spectroscopy,XRF)、傅里叶红外光谱(Fourier transform infrared spectroscopy,FTIR)等手段表征合成 MSH纳米材料以及MSH/C复合纳米材料的微观形貌、晶体结构和化学组成等性能。制备得到MSH纳米材料和MSH/C复合纳米材料后,通过四球摩擦磨损试验机和高温球-盘摩擦磨损试验机,采用试验的方法探究了它们作为润滑油添加剂的摩擦学性能,具体研究因素包括MSH与MSH/C的微观形貌结构、添加量、试验工况(包括载荷、速度和温度)等。采用SEM、EDS、白光干涉三维形貌仪、共聚焦拉曼(Raman)光谱仪等手段对摩擦磨损表面的形貌、结构和成分进行分析,通过双色光干涉试验原位监测摩擦润滑过程,并结合摩擦磨损试验结果探究MSH和MSH/C纳米材料作为润滑油添加剂的抗磨机理。水热合成MSH纳米材料的基本原理为,MgO和Si02在NaOH水溶液以及高温高压环境中可生成具有一定浓度的离子与团聚体,从而在因浓度差造成的扩散对流或外界搅拌对流的作用下,物质不断地向初始MSH晶核运输,随着反应体系时间的增长,大量晶体将在高温高压反应釜中自发生核、结晶和生长,最终制备得到MSH纳米材料。在此过程中,石墨的加入可使得其碳原子克服层间范德华力作用,而与MSH的活性氧和羟基基团结合,并以C-OH、C=O(或C-O)和C-H等方式与水镁八面体连接,最终制备得到由少层石墨烯包覆层和MSH内核构成的MSH/C复合纳米材料。此外,水热温度和时间是影响MSH和MSH/C微观形貌结构的主要因素。MSH纳米材料作为润滑油添加剂具有优异的抗磨性能,甚至在最大接触应力2.71GPa条件下实现极低磨损,它们的抗磨机制因接触应力的不同而不同。在相对温和应力条件下,MSH团聚体可进入摩擦区域,有效地提高润滑油膜厚度,从而大幅度降低磨损;随着接触应力的增大,MSH开始在摩擦剪切力和高闪温的作用下发生分解,在摩擦表面形成富含Mg、Si和O元素的抗磨膜,提供二次抗磨保障。对于MSH/C复合纳米材料,其作为润滑油添加剂可以进一步提高MSH的抗磨性能,即使在最大接触应力3.91GPa条件下也可实现极低磨损。这是因为在一定范围内,无论接触应力如何变化,MSH/C均可在初始加载阶段在摩擦表面形成具有优异抗磨性能的、由纳米晶石墨和非晶态碳(amorphouscarbon,a-C)构成的摩擦膜。图86幅,表26个,参考文献243篇。