论文部分内容阅读
外伤性周围神经损伤是临床上一种常见的疾病,对离断性长段缺损(>1cm)来说,实现自我神经修复过程非常困难。虽然已有几种神经支架已获得FDA批准用于生产和临床使用,但神经功能恢复程度有限,而且将这些支架用于修复3cm以上缺损时效果不尽人意,其主要原因是修复长段缺损需要的修复时间较长,再生的神经缺乏有力的引导而错乱的分散在支架中,造成神经不能实现正确对接,最终难以实现神经功能上的恢复。目前研究主要通过在神经导管内引入纤维、基质、水凝胶等填充基质的方式来解决这个问题,对填充基质通过一定的仿生设计以发挥对轴突的趋触性引导作用,从而达到促进神经修复的目的。细菌纤维素(bacterial cellulose,BC)作为新型天然高分子,由于具有高比表面积、高持水性、良好的生物相容性等特性被广泛用于生物医用领域,但是在神经支架方面鲜有报道,将其作为神经导管腔内填充基质用于修复神经缺损的研究更少。本文旨在制备一种新型腔内基质填充型神经导管,评价该导管的理化性能和生物相容性,进一步将其植入大鼠体内进行坐骨神经10 mm缺损修复的研究,为实现其在神经修复中的应用提供理论指导和实验依据。本文制备的腔内基质填充型导管包括静电纺丝技术制备的聚乳酸-羟基乙酸(polyglycolic acid,PLGA)外导管和冷冻干燥法制备的氧化细菌纤维素-胶原基质复合填充支架。首先通过静电纺丝工艺探索,优化了电纺PLGA纳米纤维膜的实验条件,选用浓度为15%的PLGA-DCM/DMF溶液进行纺丝,设置电压15 k V,推注速度0.4 m L/h,接收距离15 cm时可获得均匀连续的纳米纤维膜。所制备的纤维直径为283±73 nm,纤维直径分布在100-500 nm之间。厚度为0.2mm的膜拉伸强度达到3.1 MPa,断裂伸长率为24.9%,PLGA纳米纤维膜良好的孔隙结构和力学性能,不仅为营养物质和气体的交换提供多孔通道结构,同时能为神经再生提供足够的力学支撑,所以选择其作为神经支架进行进一步研究。由于人体内没有纤维素酶,将BC植入体内后难以降解,本文利用高碘酸钠对BC进行选择性氧化以制备了可降解氧化细菌纤维素(oxidized bacterial cellulose,OBC),并对其进行了理化性能表征、细胞相容性和血液相容性的评价。研究了氧化度(oxidation degree,O.D.)对OBC支架的分子结构、形貌、孔隙度、力学性能和生物降解性的影响,评价了将OBC作为神经支架研究了其生物相容性。氧化度的提高降低了力学性能,但OBC0.05/3和OBC0.05/6的拉伸强度仍有3Mpa以上,满足手术和神经修复过程中所需要的力学强度和力学支撑。不同氧化度的OBC在7天内发生不同程度的降解,其中O.D.值为9.3%的OBC0.05/3的体外降解率为BC的15倍。将OBC与生物相容性较好的胶原(collagen,COL)通过席夫碱反应复合,制备了OBC-COL复合支架。OBC与COL质量比为7:3的OBC-COL2样品中的交联度最高。OBC-COL复合支架仍维持着三维互通的网状多孔结构,各孔隙之间由高长径比纤维互相连接和交织,孔隙率达70%以上,孔径在10-100μm的孔占70%。OBC与COL复合后热稳定性提升,细胞实验结果表明OBC-COL2表现出更好的生物相容性。将静电纺丝法和冷冻干燥法结合制备了腔内基质填充导管(intraluminal sponge filled nerve guidance conduit,ISF-NGC),其中PLGA纳米纤维作为导管的外壁,OBC-COL复合支架作为腔内填充基质。将ISF-NGC植入大鼠体内研究用于修复坐骨神经缺损,结果表明ISF-NGC对神经再生有积极作用,其中再生髓鞘的成熟度优于中空导管(hollow nerve guidance conduit,H-NGC),并与自体神经移植组无明显差异。第8周后ISF-NGC组大鼠SFI值接近自体移植组。腓肠肌恢复情况结果表明,ISF-NGC更有利于缓解肌肉萎缩的症状。H-NGC为神经再生提供了一个通道,而ISF-NGC中填充的多孔支架为神经再支配提供了模拟了自体神经中细胞外基质的结构,可以引导再生神经生长和延伸,从而促进神经再支配过程。综合实验结果表明,该导管能很好的促进神经再生和神经功能恢复,具有很好的应用价值。