论文部分内容阅读
随着经济发展,建筑环境舒适性需求和建筑能耗之间的矛盾日益激化。在提升建筑环境舒适性的同时,如何减少建筑能耗是一个亟需待解决的问题。太阳能作为清洁能源,为减少建筑能耗提供了一个切实可行的能量来源途径。太阳辐射不仅可以通过窗户直接进入到建筑房间内部,也可以通过实体墙逐渐进入到室内。虽然实体墙吸收太阳能的效率较低,但实体墙接受太阳辐射的面积约是窗户面积的1.2~3倍,因此,通过实体墙进入房间内部的太阳能和通过窗户直接进入到建筑房间内部的太阳能应当给与同等重视。现阶段,对实体墙吸收太阳能的研究很少,仅有少部分文献研究了在太阳辐射和室内外空气温差下墙体吸收太阳能的耦合过程,但没有将实体墙实际吸收的太阳能剥离出来。虽然很多研究针对通过窗户进入室内的太阳能进行了分析,但这些研究主要针对节能潜力和热舒适的影响进行了探讨。实际上,在双层玻璃幕墙中,太阳能进入到两层玻璃之间的腔体时,在热压的作用下,将驱动腔体内部的气流自下向上运动。如结合现有的光催化材料,双层玻璃幕墙还具有清除VOCs功能,而这方面研究尚无人涉及。为此,本文将针对实体墙和双层玻璃幕墙对太阳能的有效利用做深入研究。我国夏热冬冷地区经济较为发达、人口密度大,人们对建筑室内环境的热舒适性要求也在逐渐提高,这使得在冬季期间居住建筑中的用户独立供暖更加普遍,冬季供暖能耗所占的比例已经逐渐成为夏热冬冷地区建筑能耗的重要组成部分。因此,本文首先以夏热冬冷地区冬季供暖为背景,对墙体实际吸收的太阳能进行了深入的研究和分析。由于吸收太阳能而使墙体减少的热损失才是墙体实际吸收的太阳能,因此,墙体吸收的太阳能不能简单地通过辐射吸收系数直接计算。为此,本文研究了可能影响墙体实际吸收太阳能的参数,包括连续日照天数、墙体构造和材料物性(保温形式、墙体材料、墙体导热系数)、室外气象参数(室外气温、太阳辐射强度)、对流换热系数等。研究结果表明,虽然连续日照天数对南墙外表面温度和逐时净热通量影响较小,但连续日照天数对墙体实际吸收的太阳能具有明显影响。随着连续日照天数的增加,墙体实际吸收的太阳能逐渐减少,到第4天时达到稳定。墙体的构造和材料对墙体实际吸收太阳能的影响较大。对于内保温墙体,昼间吸收的太阳能中有很大一部分热量会在夜间散失到大气中,当建筑外表面对流系数取为23 W/(m2·K)时,最终钢筋混凝土南墙全天的太阳能实际吸收率不到10%;对外保温墙体,传入墙体内部的太阳能昼夜变化规律与内保温相同,但由于保温层的隔热作用,昼间和夜间的太阳能实际吸收或散失率均较低,全天的太阳能实际吸收率也远低于内保温。钢筋混凝土墙体吸收的太阳能大于砖墙和自保温墙,尤其在连续日照第一天时,差异最大。连续日照第一天时,钢筋混凝土墙体的太阳能实际吸收率为8%左右,是自保温墙体太阳能实际吸收率的2倍。不同室外气温下,墙体实际吸收的太阳能和墙体太阳能实际吸收(散失)率基本相同,这表明室外气温对墙体实际吸收太阳能的影响可以忽略。太阳辐射强度可以影响墙体实际吸收的太阳能,但在不同太阳辐射强度下,实际吸收的太阳能比例却是基本相同的,因此,太阳辐射强度对墙体太阳能实际吸收率的影响可以忽略。内、外保温时,南墙的全天太阳能实际吸收率均随着对流换热系数增加而减小,但由于外保温墙体外侧为热阻较大的保温材料,太阳能很难传入墙体内部,对流换热系数对前者的影响明显大于后者。此外,外保温墙体的太阳能实际吸收率几乎不受连续日照天数影响,但内保温墙体在首个晴天的太阳能实际吸收率比日照稳定时高75%左右。本文基于最小二乘法的多元非线性回归方法得到了墙体太阳能吸收率与蓄热系数、建筑外表面对流换热系数和连续日照天数的多因素预测模型。围护结构特征(通过引入蓄热系数的概念,将导热系数、比热容、密度等三个参数归结为同一因素)、建筑外表面对流换热系数、连续日照天数等均对墙体实际吸收的太阳能具有明显影响。围护结构蓄热系数越大,墙体对太阳能的吸收率越大;外表面对流换热系数越小,墙体对太阳能的吸收率越大;连续天数越少,墙体对太阳能的吸收率越大。而室外温度变化和辐射强度对墙体吸收太阳能的效率几乎没有影响。本文给出的关于墙体太阳能吸收率的数学预测模型,可以准确快速计算实体围护结构对太阳辐射实际吸收率,快速分析太阳辐射通过实体墙对建筑能耗的有益影响,大大减少了时间和经济成本。另外,该预测模型可以快速准确地确定冬季风速风向对墙体实际吸收太阳能的影响。量化分析实体墙对太阳能的吸收水平,最终目的是评估太阳能对建筑能耗的有效降低作用。因此,本文以进入实体墙的太阳能为目标,分析了该部分太阳能对建筑物耗热量指标的影响。当南墙外表面的传热系数小时(在风速平稳或建筑物密度高的情况下),通过实体墙进入房间的太阳能吸收率可达到17%。对于内保温墙体,通过实体墙进入房间的太阳能,可以使建筑物耗热量指标减少20%至80%。对于外保温墙体,通过实体墙进入房间的太阳能,可以使建筑物耗热量指标减少10%至45%。通过实体墙进入房间的太阳能受建筑外表面传热系数的影响较大,外表面换热系数越小,影响越明显。当建筑外表面传热系数从12W/(m2·K)降至5W/(m2·K)时,房间的太阳吸收率几乎翻倍。因此,冬季通过降低南墙附近的环境风速来降低建筑能耗具有重要意义。此外,本文从建筑外墙(双层玻璃幕墙)设计的角度,提出了一种新型双层玻璃幕墙(DSF),即具有内置TiO2板的新型DSF结构(T-DSF),研究和分析了如何充分利用太阳能来降低建筑周边环境中的VOCs污染。太阳辐射可以直接透过玻璃被集中利用,但现有的利用方式(双层玻璃幕墙)多以居住环境的热舒适为目标,却忽略了人们居住环境中的空气品质。随着工业化水平的提高,各类燃料燃烧和机动车运行等产生的挥发性有机物(VOCs)聚集在建筑周围空气环境中,对人们的居住环境产生了很大的健康威胁。随着光催化材料的普及和应用,利用自然光减少环境空气污染成为了一个可行的方案。本文研究的这种新型T-DSF结构利用热压原理,控制腔体内部的气流速度,通过内置的TiO2板光催化分解BTEX(苯、甲苯、乙苯和邻二甲苯)。T-DSF的光催化氧化性能越好,表明T-DSF处理的BTEX量越大。值得注意的是,一段时间内分解的BTEX量与气流在TiO2表面的滞留时间和光催化分解效率有关,而且TiO2表面对BTEX的分解效率在很大程度上受TiO2表面附近气流的滞留时间影响。因此,要获得最大的BTEX处理量,需要对T-DSF结构进行优化设计,并在TiO2表面附近气流的滞留时间和分解效率之间取得最佳平衡。本文通过数值模拟评估了内置TiO2板的位置和TiO2板与玻璃板之间的间隙尺寸对BTEX处理量的影响,以进一步分析T-DSF的光催化分解性能。根据实验数据,得出了分解效率与TiO2表面附近气流的滞留时间之间的数学模型。使用经过验证的CFD模型,分析了18种工况(包括6种不同的间隙尺寸和3种不同的TiO2板放置策略),通过TiO2表面附近气流的滞留时间和处理的空气量,分析比较了TiO2板的光催化分解性能,从而获得T-DSF的最佳设计参数。当间隙尺寸为0.02 m,TiO2板交错安装在内外玻璃盖板上时,T-DSF系统每天可以处理的空气量(BTEX浓度为20 ppb)约为77 m3。通过T-DSF系统对太阳辐射强度的敏感性分析表明,该系统在不同太阳辐射强度下具有稳定的光催化分解性能。此外,本研究分析了三种粒径的颗粒(2.5μm,10μm和20μm)对T-DSF系统分解BTEX的影响,发现环境空气中的颗粒不会影响T-DSF系统正常的光催化氧化过程,这是因为较大粒径的颗粒物会沉积在腔体底部,而对于较小的颗粒物,流场会裹挟着颗粒物直接从系统中排出,不会沉积在TiO2板上。因此,本文分析提出的方案可视作一种解决室外环境空气污染的新思路。