论文部分内容阅读
中国的黄土高原地区是典型黄土沉积区,分布着大面积的风成黄土。黄土沉积与冰芯、深海沉积物并称为为古气候、古环境演化研究的三大支柱。中国黄土高原的黄土沉积记录了240万年来气候演化过程,以黄土沉积为载体的环境记录可以与深海沉积物的同时段记录进行良好对比,均能够反映第四纪冰期-间冰期气候旋回性特征。同时,黄土与史前文明的发展密切相关,很多石器时代的古人类遗址点都埋藏在黄土沉积之中。中更新世、晚更新世早期的黄土地层缺乏有效的测年方法,存在沉积缺失的黄土地层甚至连大致的地层层位都难以划分,这一问题限制了黄土沉积的环境演变和人类演化研究的进一步发展,解决L2地层以下到B/M界线以上黄土沉积测年盲区的测年方法问题具有重要的实际应用价值。热释光技术作为一种具有拓展目前释光测年潜力的技术手段而被关注。本工作考察黄土沉积地质样品热释光测年技术的测年上限。通过研究黄土沉积常见的石英、长石矿物的释光特征,以纯矿物为基础得到矿物发光的基本特征和一般性规律。利用洛川黄土全岩材料和混合矿物材料测得两个热释光表观年龄序列。黄土全岩L2-L6地层的表观年龄可以分为三段,300-400℃温度区间计算得到的等效剂量随地层深度具有逐步增大趋势,大致可以表征相应的地层层位。混合矿物的375℃峰温区间的表观年龄可以用于黄土地层的划分与年龄的测定。黄土混合矿物的热释光表观年龄随地层深度有显著的增大趋势。黄土沉积以混合矿物为材料的热释光直接测年上限达到129ka,能够测定末次间冰期以来黄土沉积的地质年龄。L2地层以下黄土混合矿物的热释光表观年龄地层深度增大,存在系统性偏小的特点,系统性偏小可以通过信号的长时间衰退规律予以校正。根据表观年龄与地质年龄随深度的变化关系得到一组适于黄土沉积测年的校正系数,校正的幅度随深度的增大而增大。这套校正系数能够正确划分黄土地层,得到相应层位的地质年龄。单测片再生剂量法得到的黄土热释光间接测年上限可达576ka。对于老于L6的黄土地层,多测片黄土热释光间接测年上限可达754ka,不同的测年方法通过校正可获得不同的间接测年上限。在2个典型黄土沉积体开展检验与应用,初步证实这一方法拓展了热释光技术的测年上限。洛川黄土混合矿物组分的热释光相对光强随深度具有增大的趋势,可以用以大致判断黄土的相对层位。通过综合考虑黄土全岩和混合矿物组分的热释光相对光强和表观年龄,能够判断未知黄土地层的相对层位,对粗略划分不连续黄土地层的层位和获得黄土沉积的地质年龄具有重要的实践意义。已知年龄标尺的剖面获得的黄土沉积的热释光测年技术的校正系数,可以应用于相关区域不连续的黄土沉积。本工作是采用热释光技术测定黄土年龄上限的初步探索,为较老黄土地层间接提高测年上限提供了新的思路与视角,为较老黄土地层年龄的测定问题提供了一种实践性的解决途径。