论文部分内容阅读
网络流问题是最重要的网络优化问题之一,是研究如何有效地设计、管理和控制网络系统,使之发挥最大的社会和经济效益。网络流分析是智能信息处理领域的前沿研究方向。金融网络是描述金融市场参与者及他们之间金融关系的网络模型。金融交易的发生,促使金融资源在网络中的流转,形成了金融网络中的网络流。当金融网络流的演化达到稳定状态时,金融市场的运行处于平稳状态。本文以网络流分析为主线,基于演化博弈论的框架,提出金融网络流的稳定分析理论,并把这一理论应用于三种典型拓扑的金融网络,给出相应的金融网络流的计算实验方法,实验结果能够帮助金融市场的监管者深入理解市场的运行机制,对现实的金融监管起积极的指导作用。本文的主要工作包括一个理论研究和三个应用研究,归纳如下:(1)研究了金融网络流的稳定分析理论。本文建立了一个网络博弈模型来描述金融市场中的资源分配问题;再把网络博弈表示为势博弈的形式,来求解网络博弈的均衡解;证明了当金融资源的收益率有递减性时,网络博弈有唯一的均衡解。该研究基于势的概念来分析金融市场的资源分配问题,能更直观的理解金融市场的运行规律,为研究现实金融市场中的资金、风险、信息的均衡,提供了一种博弈模型。进一步,本文针对金融市场均衡的实现过程,在演化博弈论的框架下,用动态模型来刻画金融网络流的演化,并证明了动态模型均会随时间收敛至网络博弈的纳什均衡,证明方法是采用微分方程理论中的李雅普诺夫稳定性定理。该研究考虑到金融市场中的参与者是有限理性,且会在不同的时期调整交易策略,这些条件正是演化博弈的前提,以此来分析金融网络流的稳定性质。所提出的分析方法是从演化的角度考察金融市场均衡的实现过程和条件,分析金融市场均衡与网络流演化之间的相互作用。定理的证明过程有一定的理论难度,此项研究是该文的核心理论。(2)研究了银行存贷款网络中资金流的演化性质及计算实验。在表示银行存贷款市场的三层网络中,由资金提供者、资金使用者和金融中介及它们之间的借贷关系形成了一个网络博弈,博弈的均衡状态是网络中各借贷路径的资金收益率达到均衡。由于市场参与者之间的借贷交易,在银行存贷款网络中形成了资金流,并且资金总是流向于高收益的借贷路径。本文设计了一种带波动控制的蚁群算法,把蚁群的启发式寻路特征用于资金的寻路规则,以此来计算银行存贷款网中资金流的演化过程。进一步,在模拟资金流演化的计算实验中,通过设置资金转移的保守程度,能够控制资金流的演化速度和波动范围。(3)研究了金融安全网中风险传播的演化性质及计算实验。在表示存款保险市场的二分图中,由各商业银行、存款保险机构及它们之间的保险关系形成了一个网络博弈,博弈的均衡状态是各商业银行的风险资产收益率达到均衡。由于风险资产会从已投保的银行转移至未投保的银行,在金融安全网中形成了风险传播。本文设计了一种强化学习的迭代算法,在每次迭代计算中,各商业银行根据市场提供的强化信号,制定下一个周期的投保决策,决策依据是得到高收益的概率增大,以此来计算金融安全网中风险资产的演化过程。进一步,在模拟风险传播的计算实验中,通过设置商业银行决策的学习速率,能够控制风险传播的演化速度。(4)研究了P2P借贷网中信息披露的演化性质及计算实验。在表示P2P借贷市场的Mesh网络中,由市场参与者及它们之间的投融资关系形成了一个网络博弈,博弈的均衡状态是各参与者披露信息的收益率达到均衡。由于参与者要在P2P借贷平台中向其它参与者披露其信用信息,由此在P2P借贷网络中形成了信息的传递。本文设计了一种最佳响应的迭代算法,在每次迭代计算中,参与者根据最优目标决定要披露多少信息,以此来计算P2P借贷网络中信息披露的演化过程。进一步,在模拟信息披露的计算实验中,通过设置参与者的更新概率和邻居的影响系数,能够刻画个体的异质现象。