【摘 要】
:
随着工业机器人的广泛应用,人们对于其精度要求也越来越高,而目前工业机器人的绝对定位精度普遍不高,因此开展对工业机器人绝对定位精度提升方法的研究尤为重要。机器人标定能以最小的代价弥补机器人本体结构与控制器内运动学模型参数不一致导致的误差,是目前提高机器人末端位姿精度的主要方法。本文以工业机器人为研究对象,从机器人建模、机器人末端位姿测量、参数辨识和误差补偿等几个方面展开研究,提出了一套相对通用的机器
论文部分内容阅读
随着工业机器人的广泛应用,人们对于其精度要求也越来越高,而目前工业机器人的绝对定位精度普遍不高,因此开展对工业机器人绝对定位精度提升方法的研究尤为重要。机器人标定能以最小的代价弥补机器人本体结构与控制器内运动学模型参数不一致导致的误差,是目前提高机器人末端位姿精度的主要方法。本文以工业机器人为研究对象,从机器人建模、机器人末端位姿测量、参数辨识和误差补偿等几个方面展开研究,提出了一套相对通用的机器人标定方案,并通过实验验证了方案的可行性。本文主要在以下几个方面展开了研究工作:提出了具有一定通用性的机器人末端位姿测量方案,包括机器人DCP(Detection Center Point)标定和机器人基坐标系的测量。然后使用MDH建模方法建立了机器人运动学模型,基于微分运动学建立了机器人各连杆参数误差和机器人末端位姿误差之间的数学模型,并从实际测量角度出发,将误差源中的DCP坐标系误差和机器人基坐标系误差加入到模型中,建立完整的误差模型。进行仿真验证了在微小误差的前提下,该模型能够近似地反映机器人末端实际位姿误差。对机器人误差模型中不同关节参数进行冗余性分析,给出机器人模型的冗余性参数辨别方法。采用最小二乘法作为参数误差的辨识算法,结合Matlab软件开发离线标定程序,在仿真中成功对预给定误差的模型进行了误差辨识。基于微分法和牛顿迭代法,提出一种关节空间补偿算法,利用关节转角补偿机器人末端位姿误差,通过仿真和实验证明了该方法的有效性。对工业机器人标定方法进行了实验验证,以ABB IRB120作为实验对象,使用Leica激光跟踪仪对机器人末端位姿进行测量。分别使用机器人末端位置误差和机器人末端位姿误差进行参数误差辨识,比较两个辨识结果的补偿效果,得到结论:基于机器人位置误差和基于机器人位姿误差的辨识结果对机器人补偿后都能有效地提高机器人位姿精度,而后者能更好地提高机器人姿态精度。同时比较两个结果对同一空间补偿效果发现:在某一工作空间内,标定点分布空间越大,对该空间内机器人位姿精度的补偿效果越好;同一组标定点的标定结果,对小空间的补偿效果比对大空间的补偿效果好。
其他文献
在夏季白天,步行道的阴影空间多寡直接影响行人的步行热舒适性,因此掌握步行道上的阴影空间分布对分析步行环境的夏季热舒适性起到重要作用,尤其是掌握使步行者的身体完全处
认知无线电技术在提高无线频谱的利用率、改善频谱资源的紧张状况上有十分广阔的发展前景。基于中继技术的无线通信网络具有更大的覆盖范围和更高效的信息传输。结合认知无线电技术和中继技术的优势,可以构建一种新的网络模型,即基于频谱租借模式的认知无线网络。在这种网络模型下,次级用户通过帮助主用户中继信息而获得授权频谱的使用权,这种合作的方式会使得主用户和次级用户达到双赢的状态。但是,这种模型也面临着一些问题和
“大众创业,万众创新”的倡议强化我国对于创业的重视度。与创业直接相关的便是企业家精神。企业家精神包含六个典型特征:创新精神和创业精神、合作精神和契约精神、敬业精神
近年来,人工智能技术和物联网发展越来越迅猛,而作为人工智能技术的基础和物联网最重要的数据接入口,传感器也越来越受到国家和行业的重视。为了满足人工智能技术和物联网的需要,传感器逐渐从过去单一化渐渐向集成化,微型化,智能化发展。微处理器带来的数字化革命,也对传统传感器造成冲击,因此研究集成了微处理器的智能传感器系统具有重要意义。本文首先阐述了智能传感器的研究背景和国内外发展现状,然后对传感器的基本特性
随着经济全球化的不断发展,世界各国之间的合作不断加强,2010年中国超过日本成为世界第二大经济体,中国的发展引起了世界的瞩目。外宣翻译也变得越来越重要了。近年来,中国经
异构网络作为下一代5G网络的基础,具有提高网络传输速率、提高频谱资源利用率、易于安装、提高覆盖面积、减小网络覆盖盲区、提高网络可靠性、低成本、节约能量等优点。Femtocell网络作为异构网络组成部分,被研究机构和工业所广泛关注。Femtceoll网络的引入,给无线网即带来机遇,又带来了挑战。由于Femtocell网络的随机部署,以及占用与宏蜂窝网络相同的频谱资源,Femtocell网络必然会对原
从21世纪以来,互联网在我国飞速发展,截止到2019年底,我国的网民数量达到了8.5亿,互联网普及率约为60%。同时,中国手机网民的规模也达到了4.5亿,占总体规模的73%,随着手机的
随着现代机器人技术的发展,人们开始考虑在商场、医院、餐厅等场景部署移动机器人来减轻工作人员的压力。而在这些场景执行任务时,要求移动机器人顺利抵达目的地的同时,尽量减少对周边环境和行人的影响,避免侵犯到行人的运动空间。这需要移动机器人主动获取行人的位置信息和运动状态,考虑与行人的交互作用,主动避让行人,安全高效地融入到行人运动环境中。本文针对室内行人运动环境下的移动机器人行人检测追踪以及导航避障问题
无线传感器网络(WSN)是一种自组织类型的网络,节点之间通常没有固定的通信链路,对于随机部署的WSN而言,通常不知道网络中节点的准确位置。因此,定位方法是WSN研究领域的热点之一。然而,由于WSN部署环境的复杂性,获得准确的节点位置仍然是一项具有挑战性的工作。本文结合刚性拓扑的结构不变性,围绕复杂环境下WSN定位,从基于距离刚性的WSN节点定位算法、基于方位刚性的WSN可定位性和定位精度方面进行了
极限学习机最早被提出用于训练单隐层前馈神经网络,与传统的前馈神经网络学习算法相比,不仅学习速度快,还能找到全局最优解,为回归和多分类任务提供了一种简单而有效的方法。近年来,虽然越来越多的学者对ELM的理论和应用研究产生了广泛的兴趣,但研究重点仍主要集中在有监督学习任务上。而实际应用中带类标签的数据不易获得,因此将ELM推广到无监督学习任务中是非常有必要的。本文以极限学习机为基础,针对降维方法展开研