论文部分内容阅读
在燃煤电厂超低排放与我国履行《关于汞的水俣公约》的背景下,大气汞污染的减排政策将会日趋严格。作为最大的人为汞排放源,燃煤锅炉排放中烟气汞形态、浓度检测技术的研发成为重要的研究课题。烟气中氧化态汞的选择性高效吸附特性和机理的探索成为汞形态浓度检测的基础性研究内容。因此,本文以燃煤烟气中Hg0与HgCl2的高效、精准分离为出发点,提出化学吸附分离和物理吸附分离两种技术路线,并结合固定床吸附实验研究、材料表征、密度泛函理论计算分析、分子模拟预测等研究手段,系统地探究CaO/SiO2选择性吸附剂和金属骨架多空材料UiO-66对烟气中Hg0与HgCl2高效选择性吸附的机理。首先,基于前线分子轨道理论预测和前人研究研究基础,本文对比分析了Hg0和HgCl2的化学反应活性、分子尺寸和极性方面的差异。结果表明,Hg0是非极性的单原子分子,其6s轨道上的惰性电子对效应决定了其稳定的化学性质;相比而言,HgCl2则是四极矩的直线型分子,具有更低的LUMO能级易于接受电子,为典型的Lewis酸性分子。确定了以下两种技术途径分离烟气中Hg0和HgCl2:(1)通过Lewis酸碱作用实现Hg0和HgCl2的化学吸附分离,(2)借助多孔材料的分子筛效应实现Hg0和HgCl2的物理吸附分离。然后,运用密度泛函理论(DFT)探究了Hg0和HgCl2在不同碱性吸附剂表面的吸附行为。计算结果表明,CaO、MgO、KCl、NaCl等吸附剂表面对Hg0的吸附是惰性的,而强烈的Lewis酸碱作用促成了HgCl2在CaO、MgO、KCl、NaCl等碱性表面的化学成键。CaO具有相对较高HOMO能级和较弱的Mulliken电负性,其(001)晶面对HgCl2的吸附作用最强(-95.06 kJ/mol),而对Hg0吸附能仅为-14.51 kJ/mol。确定了CaO是实现HgCl2和Hg0化学吸附分离的理想材料。第三,基于固定床实验、吸附剂表征、理论分析计算等方法,探究了介孔载体对CaO活性组分的分散机制。研究结果表明,介孔SiO2载体能够均匀分散CaO活性组分。CaO/SiO2载体吸附剂对HgCl2的吸附容量由有效微孔容积和碱性位点数量共同决定。CaO的担载量处于单层分散的临界值时,对HgCl2吸附容量最大。DFT理论预测表明,HgCl2与CaO/SiO2吸附剂存在四种强度的吸附作用(单配位<三配位<双配位<桥式配位吸附),三配位吸附是CaO/SiO2表面HgCl2最普遍的吸附方式。该预测结果在程序升温脱附实验研究结果中得到有效的验证。HgCl2的选择性吸附归因于CaO表面存在不同配位数的O吸附位,吸附位点的氧配位数越低,碱性作用越强(O5C<O4C<O3C),HgCl2选择性吸附越强烈。第四,进一步探究了烟气中强酸性的SO2组分对CaO/SiO2选择性吸附HgCl2的影响机制。固定床实验研究和吸附剂表征分析的结果表明,SO2会与HgCl2激烈竞争CaO表面的碱性位点,并导致吸附剂孔道堵塞和碱性位点失活,大幅弱化了CaO/SiO2对HgCl2的吸附性能。这一发现得到了DFT理论计算的进一步证实。Lewis强酸性的特征是SO2对HgCl2竞争干扰的本质原因。CaO(001)对SO2的吸附能(-176.27 kJ/mol)显著高于HgCl2(-95.06kJ/mol);当CaO(001)面上的碱性位点被SO2优先占据后,HgCl2的吸附能被降低至-18.56kJ/mol,体现出产物层对HgCl2的屏蔽作用。此外,SO2的竞争吸附还会破坏HgCl2的吸附稳定性,SO2与CaO作用过程的放热量为吸附态HgCl2向HgO的转变提供能量。研究发现,SO2对吸附态HgCl2的非均相还原作用,是吸附剂表面Hg0逸出现象的本质原因。第五,为了削弱SO2对CaO/SiO2选择性吸附HgCl2的干扰影响,本文进一步研究了低价态Na/K离子掺杂改性对提高CaO吸附剂抗硫毒化的微观机制。DFT理论研究发现,低价态Na/K离子有效降低了CaO表面和体相中O空位缺陷的形成能,O空位缺陷表现出Lewis强碱性的特征。增加CaO表面缺陷位点浓度对HgCl2吸附能的增益较SO2更为显著,进而起到提高HgCl2吸附稳定性,削弱SO2竞争性的作用。O空位缺陷的存在同时降低了O2-离子在CaO表面和体相扩散能垒,有助于加快气固交界面处固态离子的迁移速率,缓和产物层CaSO3对气相HgCl2分子的屏蔽效应。最后,本文自主开发了用于准确描述Hg0和HgCl2分子间作用力的分子力场参数,并基于分子力场参数,探究了HgCl2和Hg0在金属有机骨架材料UiO-66中的物理吸附分离机制。研究结果表明,UiO-66的二级孔道平均孔径(8.5?)稍大于HgCl2的分子尺寸(8.16?),远大于Hg0的动力学直径(3.4?),是物理吸附分离气相HgCl2和Hg0的理想材料。120℃下HgCl2(6.71×10-2 mol/kg/Pa)在UiO-66中的亨利平衡常数远高于Hg0(7.72×10-5 mol/kg/Pa)和SO2(4.01×10-5 mol/kg/Pa)等其他气体分子,既保证了HgCl2和Hg0的高效分离,又能有效规避了SO2等气体对HgCl2的竞争吸附作用。范德华作用是UiO-66选择性吸附HgCl2分子的主导因素,而库伦作用则可以进一步促进了UiO-66对HgCl2的选择性。极性基团(-NH2和-OH)的引入显著强化了UiO-66骨架对HgCl2的静电吸引作用。本文自主开发的分子力场模型,填补了分子力场模拟Hg0和HgCl2吸附过程的空白,为预测Hg0和HgCl2在多孔材料中的吸附机理和特性提供了模型基础。同时,本文预测了Hg0和HgCl2在UiO-66中的亨利常数、等量吸附热、吸附等温线等重要热力学平衡参数,为汞的吸附、分离、脱除以及吸附材料的定向设计等领域提供了重要理论依据和数据参考。