中国飞蝗属9个自然种群的RAPD分析及其种群遗传学研究

来源 :山西大学 | 被引量 : 0次 | 上传用户:qween
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随机扩增多态DNA技术(简称RAPD)是二十世纪90年代发展起来的一项DNA分子多态检测技术,它建立在PCR技术基础上,以一系列不同随机排列的碱基序列—单链寡核苷酸为引物—对所研究的基因组DNA进行PCR扩增。该技术能够在没有任何遗传背景的情况下,对物种基因组进行DNA多态性分析。它不但能通过众多的引物检测大量的基因位点,且具有高效、快速、样品用量少和对材料要求不高等优点,目前已广泛应用于动植物的遗传多样性研究中。 飞蝗是直翅目中较大的一个类群,它广泛分布于各种生态环境中,由于食性及环境条件的适应,形成了不同的生态型和自然地理种群。长期隔离和演化的结果,同种蝗虫不同种群之间逐渐产生了一定的遗传分化。飞蝗引起的蝗灾是我国农业历史上重大的自然灾害,本文的研究工作为我国飞蝗种群遗传学的研究提供了丰富的资料。 本文采用随机扩增多态性DNA(RAPD)技术检测了飞蝗Locusta migratoria(Linnaeus)9个自然种群的遗传多样性及遗传分化。用筛选的11条随机引物对飞蝗的9个种群113个个体进行扩增,共获得163个清晰稳定的条带,多态位点共计161个,总的多态位点百分率为98.77%。不同引物在不同种群中所检测出的RAPD位点及多态位点百分率不同。Shannon信息指数和Nei’s指数对RAPD数据的分析表明:东亚飞蝗Locusta migratoria manilensis(Meyen)不同种群存在较高的遗传多样性。其中,东亚飞蝗山西临漪种群由Shannon信息指数和Nei’s指数估算的遗传多样性最高分别为0.2767和0.1896,河南中牟种群由这两种指数估算的遗传多样性最低分别为0.1648和0.1109;同时,东亚飞蝗种群间出现一定程度的遗传分化,由这两种指数估算的遗传分化系数分别为42.90%和40.10%。 用NJ法对Nei’s遗传距离作聚类分析,结果显示:东亚飞蝗山西临漪和山西永济种群聚为一支,东亚飞蝗河南中牟种群和江苏沛县种群聚为一支,两支相聚后,辽宁葫芦岛种群和它们相聚;东亚飞蝗河北黄骅种群和河北平山种群聚为一支后与天津北大港种群相聚再与前三支聚为一起,最后新疆亚洲飞蝗Locusta migratoria migratoria(Linnaeus)种群与
其他文献
本文分为两章,第一章研究了连通无向图G的顶点扩张图(见定义1.13)的最小直径定向问题。图的最小直径定向问题的研究来自对单行街和流言问题的研究,目前这两个问题仍为研究的热点。单行街问题可以追溯到Robbins的经典论文[3],文[3]给出著名的单行街定理:一个连通的无向图G有强连通定向当且仅当G无桥。对一个无桥的连通无向图G,设Ω(G)表示G的强连通定向集合,对每一个D∈Ω(G),我们用d(D)(
本文分为三章对有限图的Hamilton性、Ramsey数和四色猜想三方面的问题分别作了讨论。 在第一章里我们讨论了图的Hamilton性问题。文章第一节首先介绍了Hamilton图的概念和一些相关的定理。第二节对Ore定理的结论进行了推广,证明了2连通简单图G,若独立数α≥3且对G中任意一个独立集{x,y,z}有dx+dy+dz≥3ν/2,则G是Hamilton图,同时还证明了G是2连通简单
集值分析是20世纪40年代以后蓬勃发展起来的一个现代数学分支。作为非线性分析的重要组成部分,在众多领域内有着广泛应用,其思想方法也已渗透到许多社会科学、自然科学以及技术领域的研究之中。由于不动点在理论和应用上的重要性,一直是数学研究的重点。关于集值映射不动点理论的研究,早在19世纪30年代Von Neumann就讨论过,之后,Kakutani, Brouwer, Bohnenblust, Karl
本文运用压缩的二维时域有限差分算法(Compact 2D FDTD)对方形渐变空气孔微结构光纤的色散特性进行了研究,并与方形不变和三角形渐变空气孔微结构光纤的色散特性进行了比较。所得结果对渐变微结构光纤的设计和应用有一定的参考意义。 本文的主要内容如下: 1、综述了微结构光纤的发展状况及主要研究方法。 2、介绍了时域有限差分算法的基本原理、数值稳定性条件、吸收边界条件以及它的有效
门限自回归模型在时间序列分析中已得到广泛应用。当建立或应用这种模型时,了解条件异方差的存在性是很重要的。本文分两节对门限自回归模型中自回归条件异方差的广义谱密度检验进行了讨论。在第一节中,我们介绍了广义谱密度检验。广义谱密度检验可以反映出时间序列的所有两两相依性,包括具有零自相关的那些序列。广义谱密度和它的导数还可以被用来检验序列相依的各个方面,例如鞅差,条件同方差性,条件对称性,和条件等峰度性等
设有限群S作用在有限群G上,记C=CG(S)为S在G中的不动点子群。特征标对应理论的一个核心问题是:何时存在一个典范双射 *:IrrS(G)→Irr(C),x(?)x*。 在互素条件下,即假定(|S|,|G|)=1时,Glauberman在1968年证明了当算子群S为可解群时存在上述典范双射,现在称其为Glauberman对应。剩下的是S不可解情形,此时由Feit-Thompson关于奇数阶
本文首先简单介绍了广义自回归模型,接下来给出了相关的主要结论。重点是第三章和第四章,分别是主要结论的证明和应用。本文给出的主要结论是将广义自回归模型的设计矩阵 Pn=sum from k=1 to n (XkX′k), X′k=(X(k),…,X(k-p+1))分解成对角矩阵,对角元分别为平稳的,振荡的和爆炸的自回归子模型,即存在一个非奇异的实矩阵R,使得 RPnR′=(1+o(1))
本试验对日本龟蜡蚧(Ceroplastes japonicus Green)、角蜡蚧(Ceroplastes ceriferus Fabricus)、白蜡绵粉蚧(Phenacoccus fraxinus Tang)、瘤大球坚蚧(Eulecanium gigantea Shinji)和朝鲜球蚧(Didesmococcus koreanus Borchsenius)等5种蚧虫基因组DNA的提取和微卫星
一个图若包含Hamilton圈,则称这个图是Hamilton图。众所周知,一个极大平图是3连通图。判定一个3连通平面图是否是一个Hamilton图,这个问题是NP完备问题。然而,Chvatal和Wigderson也分别证明了判定一个极大平图是否是Hamilton图,这个问题仍是NP完备问题。因此对极大平图的Hamilton性进行研究是有重要意义的。Whitney证明了没有分离三角形的极大平图是Ha
本文研究分为两部分。主要研究的内容为中华稻蝗抗菌肽分离的初步研究。昆虫的免疫系统没有像高等动物所具有的免疫球蛋白和补体系统,在长期的进化过程中,发展出了一套独特的免疫系统。自Boman H.G.领导的研究小组从惜古比天蚕(Hyalophora cecropia)的蛹中诱导分离得到第一个昆虫抗菌肽——天蚕素(cecropin)后,昆虫的免疫研究进入了一个新时期,对昆虫抗菌肽的研究具有重要的理论意义和