论文部分内容阅读
在传统光电成像技术的研究中,光电探测主要是采集目标的反射光强度与光谱信息,如传统的强度成像、多光谱成像、高光谱成像等方法。传统成像方法获取的目标信息单一,且易受到环境因素影响。随着偏振成像技术的发展,弥补了传统成像方法的不足。偏振成像技术能够采集目标的偏振特性信息,包括目标光波的振幅、波长、相位等特有属性,含有丰富的细节与纹理信息,且不易受到温度、雾霾等因素限制。但偏振探测技术也存在着固有缺陷,由于偏振元件对光能量的衰减,当目标处于光照度较低的背景环境下,图像的对比度下降,甚至淹没目标,因此复杂背景下的目标探测已经成为当今亟待解决的研究难题。本文提出一种灵巧型偏振、强度共口径光学成像系统,不仅解决了传统成像方式获取信息单一的问题,也解决了偏振成像技术损失目标光强度的问题。论文的主要内容及创新点可归纳如下:首先,针对分焦平面偏振成像系统的成像精度进行深入分析,定义串扰参量,建立串扰与噪声条件下的高精度偏振矢量传输矩阵,推导包含串扰量、消光比、传感器噪声、光电子数、目标光参数及系统偏振成像精度的多物理量耦合作用数学模型。结合带有约束的矩阵最小二乘法,为相机的非均匀性响应提供校正参数。分析成像系统的误差来源,调研相关的误差校正方法。搭建polarcam像素级偏振相机校正平台进行实验,对采集的图像分别进行非均匀性噪声、盲元噪声以及瞬时视场误差的校正。其次,采用矢量法对偏振成像系统的核心器件——金属纳米线栅阵列进行优化仿真,通过对线栅的线宽、线高、占空比、衍射距离、材质及面型的仿真结果探究线栅关键参数对光学串扰的影响,设计最优化光栅阵列。针对芯片式纳米线栅阵列与探测器焦面的固有间隙,提出一种基于中继成像式的偏振调制方法,利用双远心光路的共轭关系,将偏振线栅阵列置于共轭点上,将大尺寸的偏振元件与小尺寸的传感器相配合,在降低光学串扰的同时,保证系统的空间分辨率不变。搭建大尺寸中继成像式光路消光比测量平台,采用蒙特卡洛法分别仿真两种光路结构下光学串扰对成像精度的影响,验证了中继成像式偏振调制方案的可行性。最后,由于偏振成像方式的固有缺陷——损失目标光强度,致使偏振图像的背景信息模糊、昏暗,不利于对目标的分析。本文提出一种双模式共口径光学成像系统,通过灵活控制不同种类的滤光片切入光路,根据实际需求实现多种模式的成像。通过对异源图像的融合,实现异源信息的互补,提高图像的信息熵与目标信噪比。搭建强度、偏振异源图像采集平台,将得到的偏振度图像、无损强度图像基于改进后视觉显著图与非降采样轮廓变换的方法进行融合实验,并对最终的融合图像进行质量评价。综上所述,本文结合工程实践,设计了一种灵巧型偏振/强度共口径光学成像系统,在现有的分焦面式偏振成像系统结构基础上,通过对光学系统的误差校正,提升了系统的成像精度;通过对金属纳米线栅单元的参数优化,抑制了系统光学串扰的强度;通过对调制方案以及光路结构的设计,使新的光电系统能够适应多种探测环境;通过对异源图像融合算法的改进,提高了算法的精度以及算法稳定性。这一系列的研究对高精度、高稳定性、多模式机载光电成像系统提供了重要的理论基础,对机载光电探测领域的发展具有重要的理论研究及实际工程应用价值。