海底腿-桨复合式六足机器人力学建模与协同控制研究

来源 :哈尔滨工业大学 | 被引量 : 0次 | 上传用户:wang8550cimc
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
海洋对人类生存意义重大,“十四五”规划将深海探测列为科技创新领域十大重点研究方向之一,随着深海探测迅速发展,迫切需要一种性能出众的海底探测与作业设备。传统推进器式、履带式、仿生式探测设备受水流影响大,存在定点作业困难、环境扰动大等缺点,水下足式机器人出现可有效解决上述问题。但受水流、坡度、泥地等因素影响,海底行走更容易倾覆、打滑失稳,如何使机器人海底稳定行走,是足式机器人在海底成功应用的关键。本文针对一种腿-桨复合式六足机器人,对上层协同控制策略、下层协同控制算法两层协同控制提高海底行走稳定性开展了研究。力学建模是机器人海底运动性能分析和控制的基础。对机器人所受环境作用力学水动力、足地力、螺旋桨力分析,推导了单腿、机体动力学模型,通过耦合关系建立了整机加速度与关节力矩、水动力、推力解析关系。利用关节约束,分析了11种不同情况下机器人加速度空间包络面,动力学模型和不同步态之间的运动性能分析为后续如何通过协同控制提高稳定性提供了理论基础。协同控制是提高机器人海底行走稳定性的有效方法。为提高稳定性,设计了适应海底环境的步态切换和足端轨迹。根据实际环境,定义了海底工况并进行失稳分析。建立面向海底斜坡环境稳定性判据,从保证稳定性和节约能量角度出发根据运动性能分析结果设计了足式行走、混合行走两种模式间的上层协同控制策略。利用整机动力学模型,设计了混合行走时下层基于螺旋桨主动配合的前馈复合协同控制算法。两层协同控制将有效提高机器人海底行走稳定性。仿真分析是研究机器人海底行走稳定性的有效手段。为了具体分析不同因素对稳定性影响并验证协同控制有效性,利用C++开发了基于Vortex的虚拟动力学仿真平台,详细分析了步态、流速、推力算法、坡度对稳定性的影响,发现二、三、六步态在不同工况下稳定性逐渐增强,采用螺旋桨推力混合行走后可进一步提高稳定性。利用仿真验证了协同控制策略、协同控制算法对提高稳定性的有效性,使机器人在最大1.5m/s实变流速下自主走上了20°斜坡。本文通过对海底复合式机器人力学建模,设计了上层协同控制策略、下层协同控制算法两层协同控制,仿真分析了多种因素对稳定性影响并验证了设计的协同控制对提高稳定性的有效性,为足式机器人海底失稳提供了解决方案。
其他文献
气动连续体机器人是一种没有刚性关节、由柔顺性材料组成的机器人,其具有极高的灵活性与操纵能力,对于复杂结构环境具有很强的适应能力,并且可以进行非常安全的人机交互。本文研制的机械臂属于气动连续体机器人的一种,作为一种执行器,可以应用于工业、农业、家庭环境与护理等应用场景下的操作辅助、抓取搬运等任务。本文开展了对于气动连续体机械臂的研制以及控制方法的研究,设计并制作了机械臂样机,提高了机械臂运动的位姿精
由于足式机器人与环境之间通过离散的落足点运动,相比于其他形式的移动机器人拥有更好的灵活性和适应性,这就注定足式机器人在一些相对复杂环境下运动拥有更大的优势。从上世纪80年代第一款单足跳跃机器人到后来Boston Dynamics推出Big Dog四足机器人,对足式机器人领域的研究做出了重大贡献,同时其广阔前景也吸引了众多学者投入到相关研究工作中,国内对于四足机器人的研究起步较晚,主要集中在863计
柔性外骨骼是一种新型的穿戴式智能机电系统,是外骨骼系统领域研究的一个热点方向。相较于传统的刚性外骨骼,由柔索、气动肌肉等柔性部件驱动的柔性外骨骼能够更好地适应人体特殊的解剖结构,具有运动自由度高、机械系统重量轻、人机交互性能好等优势,在航天、医疗、军用、工业等多个领域均有十分广泛的应用前景。本文从外骨骼机械系统设计、肌声信号采集与特征提取、人体关节力矩辨识等角度对柔性外骨骼系统展开研究。本文首先根
机电伺服系统的动态跟踪精度受到结构不确定性(参数波动)和非结构不确定性(未建模动态、外部干扰、非线性摩擦)的影响。自适应鲁棒控制是一种解决不确定性控制问题的先进控制方法,在很多领域都得到了应用,然而当动态跟踪精度要求较高时,该方法由于对扰动辨识精度不够精确,导致系统的动态跟踪精度不理想。扩张状态观测器在自抗扰控制中,用于观测扰动。本文以机电伺服系统为研究背景,提出一种基于扩张状态观测器的自适应鲁棒
随着永磁同步电机(PMSM)驱动系统在家用电器领域的广泛应用,对高可靠性与低成本化的需求日益增加。传统的矢量控制系统需要三个相电流传感器以及一个固定在电机转子轴端的位置传感器进行闭环矢量控制,过多的传感器不仅增加了系统的成本,传感器预留位也增加了系统的体积,并且降低了驱动系统在恶劣工况下运行鲁棒性。为了提高家用电器的市场竞争力,单电阻电流重构技术受到了广泛重视。与此同时,不依赖位置传感器获取转子位
核聚变能源具有储量丰富和能源本身清洁可持续等诸多优点,具有较高的军事与社会价值。激光约束聚变是实现受控核聚变的主要方式之一,腔靶作为激光聚变实验的主要操作器件,其制造与装配精度是影响实验成功的关键因素。目前的腔靶装配方式多为人工装配或半自动化微装配系统装配,装配效率不高,且灵活性较差,为实现激光聚变腔靶的高效灵活装配,本文对双操作手协调装配腔靶的运动规划开展相关研究。首先,通过对激光聚变腔靶对接装
工业4.0的提出,在全球范围引发了一场以智能制造为核心的工业革命。智能维护是智能制造的重要组成部分,刀具的健康状态监测是智能维护的重点研究对象,如果刀具磨损超过相应指标却未及时更换,则会造成时间经济等方面的损失浪费,由此可见,预测加工过程中刀具的磨损量有重要意义与价值。目前车间内可以获得数据越来越多,数据呈现多元异构的特性,而传统刀具健康监测技术所采用的浅层机器学习难以将其全面利用。此外,在实际加
在全球提高制造业的自动化水平背景下,机器人通过传感器自动识别焊缝的位置完成焊接对提高焊接的自动化水平有着重要的意义。本文提出了一种基于立体视觉对焊缝进行三维重建并规划机器人焊接路径的方法。该方法适用于各种尺寸,各种角度放置的V型对接坡口焊接工件,对三维重建过程中噪声的抗干扰能力强,鲁棒性好。本文首先进行了硬件设备搭建和点云采集工作。采用了Kinect深度相机对工件进行三维建模,并以点云的方式输出,
随着老年人口数量的增加,平衡障碍的发病率呈上升趋势。许多老年人由于头晕而摔倒,头晕导致平衡失调,存在很严重的安全隐患问题。平衡失调问题目前是医学界人士关注的焦点,是医学领域亟待解决的问题。我国平衡失调患者逐年增多。但医疗资源十分有限,康复训练方法单一,技术落后。本课题以平衡障碍患者康复训练机器人为研究对象,开展研发的相关工作。人体平衡障碍的成因很大一部分原因是运动感知系统异常,尤其是前庭感知系统功
压电-摩擦电能量转换技术可将机械能转换为电能来为电子元件供能,或者作为自供电传感器使用来检测人体的生理状态。本文应用MEMS工艺中的掺杂和薄膜技术制备了纳米复合电极,利用这种电极设计出检测人体脉搏和步频信号的可穿戴传感器。本文通过无场、温度场、紫外线场、磁场和复合场等物理场测试和人体穿戴实验对这款传感器的性能进行探究。研究了Polyvinylidene Fluoride(PVDF)材料的压电效应,