论文部分内容阅读
在离子交换工艺中,K-Na离子交换技术以扩散速度比较小,容易控制,工艺重复性好,成本低廉,所制备的玻璃光波导传输损耗低、折射率及模场分布与光纤的匹配良好、易于集成,并且具有较高的双折射,在光通信和光学传感等应用领域有着非常广阔的前景。虽然大多数离子交换的研究都致力于实现掩埋型光波导,但是在离子交换玻璃光波导传感器方面的应用有时仍然需要非掩埋型光波导。离子交换制备波导的过程虽然简单,但对玻璃波导的参数测量以及质量评估却比较复杂,而且离子交换平面玻璃波导参数(如折射率分布和传输损耗等)的确定和了解是筛选衬底以及进一步设计与优化波导器件的基础。本文主要研究K-Na离子交换玻璃平面波导的制备及其参数的测定,首先对集成光学和波导材料及其制作工艺做了简单的介绍,然后阐述了离子交换过程以及折射率变化的原理,并阐述了波导的关键参数并对其进行表征。具体研究内容如下:1)K-Na离子交换玻璃平面波导的制备及单模波导折射率分布的确定在分析用离子交换技术制备的非掩埋型平面玻璃波导的折射率分布时,经常使用的是由White和Heidrich提出的反WKB方法,但用这种方法来确定渐变折射率平面波导折射率分布时一个非常重要的局限是波导模式个数应该为3个或3个以上,由于这个局限性使得该方法不能用来拟合单模波导折射率的分布。现有单模平面光波导折射率的分析方法,有的破坏波导结构;虽然有的方法不破坏光波导结构,但方法与实验条件却比较复杂,如所用的多波长法、光束干涉法以及匹配液法等。本文利用K-Na离子交换技术制备了Soda-lime玻璃平面多模波导,通过棱镜耦合技术得到了波导的有效折射率,用反WKB方法,分别用高斯分布,e指数分布和余误差分布三个函数拟合离子交换平面波导的TE和TM模的折射率分布,得出380℃温度下K-Na离子交换实验制备的玻璃平面波导的折射率分布符合高斯分布。通过所获得多模波导的折射率分布等相关数据,得到波导的色散曲线,从而得到制作单模波导的有效扩散深度范围,由多模波导的有效扩散深度利用扩散公式得出扩散系数,从而获得制作单模波导的离子交换时间范围,并制备出单模平面玻璃波导,通过求解WKB色散方程得出单模波导的折射率分布曲线,方法简单易懂,很好的填补了传统反WKB方法的不足。2)K-Na离子交换玻璃平面波导传输损耗特性的确定离子交换玻璃波导的传输损耗不仅与所选衬底的质量有关,同时也体现了波导制备工艺的好坏,对该参数的实时测量,对于评估光波导的质量和改善波导制备工艺都很重要,于是操作简单并且对波导没有破坏性的测量传输损耗的技术方法非常重要。已有的测量玻璃波导传输损耗的方法有末端耦合法、截断法、法布里-珀罗干涉法、滑动棱镜法和三棱镜耦合法等。这些波导传输损耗的测量方法除了有的具有破坏性外,且实验过程也都比较复杂。与这些方法相比,散射光法是一种非破坏性的传输损耗测试方法,并且随着数码照相技术的普及,该方法所用设备也越来越廉价,实验过程也相对比较简单。本文将采用普通数码照相机,通过对离子交换平面光波导的传输线进行数字成像,根据波导传输线上的光强度分布拟合出传输衰减曲线,计算出玻璃波导的传输损耗,该测量方法实验设备条件简单、易操作、且在不破坏玻璃波导结构的情况下,能够得出精度较高的测量结果。