【摘 要】
:
表面等离激元是一种光激发下材料表面的自由电子集体振荡效应。自上个世纪六十年代发现表面等离激元现象以来相关的研究已经逐渐成熟。表面等离激元具有很多特殊的性质,可以将光局域在很小的空间尺度之内,形成很强的电磁场增强效应。表面等离激元也可以通过对入射光的频率选择效应来调制远场的光学响应。这些性质使表面等离激元成为了微纳光学中非常重要的组成部分。而近年来随着研究人员的深入探索,表面等离激元已不只是局限于微
论文部分内容阅读
表面等离激元是一种光激发下材料表面的自由电子集体振荡效应。自上个世纪六十年代发现表面等离激元现象以来相关的研究已经逐渐成熟。表面等离激元具有很多特殊的性质,可以将光局域在很小的空间尺度之内,形成很强的电磁场增强效应。表面等离激元也可以通过对入射光的频率选择效应来调制远场的光学响应。这些性质使表面等离激元成为了微纳光学中非常重要的组成部分。而近年来随着研究人员的深入探索,表面等离激元已不只是局限于微纳光学领域,而是和生物检测、化学分析、材料科学、信息技术等多领域交叉发展,成为了很多前沿科学技术的核心组成部分。本论文主要围绕大面积微纳结构产生的表面等离激元效应,结合实验结果及理论分析,研究探索了表面等离激元的近场增强效果及远场调制效应。具体来说,本论文的研究重点主要为以下两个方面。一、对于近场增强效应,设计并研究了一种双层金属光栅纳米结构,这种经过设计的双层金属光栅结构可以产生表面等离激元导致的电场增强,并同时产生光学腔模式这将使局域电磁场增强的范围扩大,而不止局限在金属表面。通过改变双层金属光栅的结构参数,以及仿真模拟计算分析,我们研究了不同电磁场增强模式的效果。这种并非局限在金属光栅表面的电场增强效应可以在提高原有的拉曼信号增强效果的同时也大大减少分子吸附在光栅表面的时间,实现了拉曼信号的即时探测。而这种利用微纳加工手段自上而下制备的纳米结构也具有很好的均一性稳定性以及可重复性,通过与微流系统的结合可以大大增加增强拉曼探测的实用性。此外也对金属表面吸附分子的荧光信号的增强效果进行了测量,为将来的生物检测打下来基础。二、对于远场调制效应,利用二氧化硅微球的表面等离激元效应对红外辐射效应进行了研究,并将二氧化硅微球混入表面多孔的有机高分子材料中,制备了可以在大气窗口范围高效进行红外辐射的材料,实现了较好的辐射制冷效果,白天与外界空气温度相比可以达到接近10度的制冷效果。同时测量了辐射制冷的功率及制冷效果,并对辐射制冷的实用化进行了探索。此外我们也对可以调制反射光波长的金属纳米结构进行了研究,并研究提出了两个可以批量化制作这些彩色纳米结构的加工方案。本文结合理论和实验研究了大面积微纳结构上表面等离激元的作用,主要针对其近场增强效果和远场调制效果进行了深入研究。并立足于自上而下的微纳加工手段,对大面积微纳结构的批量化制备进行了研究。本论文的工作加深了对表面等离激元的进一步理解,并为未来的基于表面等离激元的超结构的实用化可能性打下了基础。
其他文献
研究背景:香烟中含有约4000余种化合物,尼古丁是其重要成分和主要成瘾物质。香烟替代产品如尼古丁贴片、尼古丁口香糖、电子烟的主要成分也是尼古丁。有大量的文献报道尼古丁影响成骨细胞、破骨细胞的正常生理功能。令人感到吃惊的是,虽然体内实验证实尼古丁可以造成骨折愈合障碍,骨密度下降,但是一些学者在体外实验中发现,在低浓度下尼古丁对成骨细胞的分化和成骨功能不产生影响甚至有促进作用。因此尼古丁通过何种机制干
椭圆曲线算术理论在密码学中有着广泛的应用,基于椭圆曲线的公钥密码已经逐步取代RSA成为当今世界最主流的公钥密码.椭圆曲线密码是当前单比特安全强度最强的公钥密码.与其他公钥密码相比,在提供相同安全强度的前提下,它需要的密钥长度更短并且计算速度更快.基于椭圆曲线的密码学研究是当下最主流的密码学研究方向之一.密码协议是密码学研究的一个重要分支,认证密钥协商协议作为密码协议的一部分已经得到了广泛的应用实践
背景:膀胱癌是世界上第九大常见恶性肿瘤,冷诱导RNA结合蛋白(Coldinducible RNA binding protein,CIRBP)与多种肿瘤的发生发展有关,而CIRBP在膀胱癌中的作用尚未见报道。CIRBP是一种RNA结合蛋白,可以与多种靶向mRNA的3’-UTR特异性结合,UniGene数据库显示HIF-1Α是CIRBP靶向转录产物之一。低氧诱导因子-1α(hypoxia induc
第一部分生物信息学方法筛选膀胱癌发生发展中周期调控相关的差异基因目的:通过生物信息学方法对不同基因芯片结果进行富集,筛选与膀胱癌发生发展高度相关的差异表达基因,为膀胱癌诊断提供潜在无创标志物,以及精准医学分子靶向治疗的潜在药物靶点。方法:从GEO数据库网站下载人膀胱尿路上皮移行细胞癌患者的RNA二代测序数据和相应的临床特征信息,并结合课题组前期测序数据,利用R语言对数据进行处理,在4个芯片数据的差
目的:利用BPH样本的转录分析和生物信息学分析,探讨良性前列腺增生(BPH)进展的机制,并阐明基质重塑相关蛋白5(MXRA5)在BPH中的作用。材料和方法:使用五个BPH组织样本和三个正常前列腺组织样本进行基因表达谱分析。通过荧光定量PCR,蛋白质印迹和免疫荧光分别研究BPH组织和正常前列腺组织中MXRA5的mRNA和蛋白质的表达水平。并在体外人前列腺细胞中研究了MXRA5基因的生物学功能。最后,
目的:肿瘤微环境是肿瘤生物学中新兴的焦点。肿瘤发生过程中,PDGFs与其对应的受体PDGFRs在信号途径方面起重要作用。广泛认为PDGF-BB以旁分泌回路在肿瘤基质形成中占重要地位。然而,PDGF-BB在非小细胞肺癌中的机制尚未完全展现。方法:RT-PCR、荧光定量PCR用来检测MCP-1 mRNA水平,Western印迹用来测其蛋白表达水平。Western印迹、染色质免疫共沉淀(ChIP)用来探
目的:由于器官来源不足,心脏死亡(donation after circulatory death,DCD)供肝等质量不佳的肝脏被应用于临床,为弥补冷保存(cold storage,CS)不能修复供肝质量的缺陷,肝脏低温携氧机械灌注(hypothermic oxygenated machine perfusion,HOPE)技术逐渐被使用。然而鉴于缺乏合适的研究模型,HOPE作用的分子机制尚不明晰
大脑是自然界最精密复杂的结构,是调节机体各项功能的最重要器官。哺乳动物的大脑皮层位于大脑的背外侧,是意识、精神、语言、学习、记忆等高级神经活动的基础。投射神经元是大脑皮层的基本功能单位,由胚胎期的神经前体细胞通过分裂和分化产生。因此,发育神经生物学的最重要任务之一是探究神经前体细胞是如何通过自我更新、分裂和分化过程构建复杂精致的大脑皮层。近年来,随着高通量测序数据的日益丰富以及各种生化和分子生物学
纤维素作为自然界中普遍存在的生物质资源,具有可再生、生物相容性和生物降解等性质,引起广泛的关注。纤维素基材料独特的多级结构和优良的性能,在柔性电子器件、生物平台和储能材料等领域具有巨大的应用前景。通过“绿色”溶剂——碱/尿素水溶液溶解纤维素制备的再生纤维素材料,不仅制备过程环境友好而且还避免了有毒化学物质的使用,在天然高分子和材料等领域显示出巨大应用潜力。通过该方法制备的再生纤维素材料具有不同的结
颗粒材料是颗粒与孔隙组成的集合体,在应变局部化现象中颗粒位移具有强烈的非连续性和非线性,颗粒样本材料点的应力大小不仅与该点的应变大小和加载历史有关,而且会受到高阶变形梯度的影响。因此,本文基于离散元方法,研究了二维模型颗粒材料的变形梯度效应,从宏观应力、能量和三阶应力不变量的演化等方面分析了一阶剪切应变梯度和一阶转动梯度对线性接触模型和自定义抗转动接触模型的颗粒样本力学行为的影响,本文主要研究内容