论文部分内容阅读
自由基在燃烧过程、大气化学、分析化学等众多领域中都扮演着重要的角色,自由基光谱研究对于了解自由基微观结构、发展检测手段、确认化学反应通道及分支比等方面都有重要的意义。本论文的主要工作是设计和搭建了一套用于研究自由基光谱的光腔衰荡光谱(CRDS)实验装置,并将之与超声射流冷却、气体放电等技术相结合,研究了PH2、AsH2以及过渡金属自由基的吸收光谱。主要工作和研究成果有:实验装置的建立我们设计并搭建了一套流动体系中脉冲直流空心阴极放电-光腔衰荡光谱实验装置(Pulsed DC Hollow Cathode Discharge-CRDS)。在这套装置中,我们引入了双阳极空心阴极放电作为目标自由基产生源。除了建立这套装置外,我们还将光腔衰荡光谱测量系统与实验室原有的超声射流腔体结合,改造成超声射流-脉冲直流辉光放电-光腔衰荡光谱装置(Supersonic jet-Pulsed DC Glow Discharge-CRDS).通过测量高反镜反射率和H20的泛频吸收光谱两个实验验证了我们的光腔衰荡光谱测量系统的可行性:吸收的检测限可达4×10-3(1-R);获得的吸收光谱的光谱分辨率优于0.055cm’。PH2自由基光谱研究在超声射流条件下,通过对PH3、SF6与Ar的混合气脉冲直流辉光放电产生PH2自由基,利用光腔衰荡光谱技术和激光诱导荧光技术获得了PH2自由基在410-555nm范围内的光谱。在光谱中总共观测到10个振动带,它们被归属为PH2-自由基j2A1-X2B1跃迁的弯曲振动激发000&20n(n=1-6)和2ln(n=1-3)的两个序列。通过对CRDS光谱的转动分析和振动分析,确定了PH2自由基X2B121态和A2Al2n(n=0-4)态更为完整和更为精确的光谱常数,包括带源、转动常数、离心畸变常数、自旋转动常数以及A2A1态弯曲振动参数等;改进了X2B121态和A2A12n(n=0-3)态的转动项值;分析了A2A12n(n=0-6)态所受到的扰动。通过对转动谱线的荧光寿命的测量,获得了A2A12n(n=0-6)态的自由寿命。通过对CRDS实验和LIF实验结果的对比分析,讨论了PH2自由基A2A1态的扰动源以及可能存在的预离解通道。AsH2自由基光谱研究在超声射流条件下,通过对AsH3、SF6与Ar的混合气脉冲直流辉光放电产生AsH2自由基,利用光腔衰荡光谱技术和激光诱导荧光技术获得了AsH2自由基在380-510nm范围内的光谱。在光谱中总共观测到11个振动带,它们被归属为AsH2自由基A2A1-X2B1马跃迁的弯曲振动激发000&20n(n=1-7)和21n(n=1-3)的两个序列。通过对实验光谱的转动分析和振动分析,确定了AsH2自由基X2B121态和A2A12n(n=0-7)态更为完整和更为精确的光谱常数,包括带源、转动常数、离心畸变常数、自旋转动常数以及A2A1态弯曲振动参数等,其中绝大大部分的数据为首次实验获得;首次实验确定了X2B121态和A2A12n(n=0-7)态的转动项值。通过对五A2A1-X2B120n(n=2-7)带转动谱线线宽的研究,获得了A2A12n(n=2-7)各态的自由寿命。综合转动分析和激发态自由寿命的结果,分析了A2A12n(n=0-7)态所受到的扰动,并提出了AsH2自由基A2A1态三个可能的预离解通道。我们还在室温下利用空心阴极放电结合CRDS技术研究了AsH2自由基A2A1-X2B1跃迁000带的吸收光谱,获得了一些高阶光谱参数,如六阶和八阶离心畸变常数和四阶自旋转动相互作用常数,并对00态较高转动能级受到的扰动进行了讨论。CRDS结合空心阴极放电研究过渡金属自由基光谱设计了一套双阳极空心阴极放电装置作为过渡金属自由基的产生源,并将之与光腔衰荡光谱(CRDS)技术相结合,用于研究过渡金属自由基的吸收光谱。借助于光学谐振腔的腔镜和放置于光电倍增管前的窄带通滤色片,我们基本消除了等离子体自身光辐射的影响。通过对实验获得的CuF B1∑+-X1∑+跃迁、CuBrb3Π+-X1∑+跃迁的吸收光谱的分析,得出整套实验系统的性能为:吸收检测灵敏度为-4×10-7,光谱分辨为-0.055cm-1。