锂离子电池正极材料LiNi1/3Co1/3Mn1/3O2的合成及其改性研究

被引量 : 0次 | 上传用户:chaska
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
目前,商业锂离子电池中主要采用LiCoO2作正极材料,但由于价格和安全性的问题,LiCoO2已不能满足锂离子电池发展的需要,因此,开发低成本,高性能的新型正极材料成为目前锂离子电池领域研究的热点。与LiCoO2相比,Li(Ni1/3Co1/3Mn1/3)O2具有成本更低,安全性能更好等优点,不仅能取代LiCoO2应用于小型锂离子电池,而且在动力电池等大功率锂离子电池中有着广阔的应用前景。本论文系统的研究了Li(Ni1/3Co1/3Mn1/3)O2的合成及其组成、结构、电化学性能之间的关系。深入研究了合成条件对材料性能的影响,并得到了优化的合成工艺。采用优化的工艺合成了LiNi1/3Co1/3Mn1/3O2,并采用SEM,XRD,恒电流充放电测试等方法对合成的LiNi1-x-yCoxMnyO2系列化合物进行了表征测试。本文通过阴、阳离子复合掺杂改善LiNi1/3Co1/3Mn1/3O2材料的性能,获得电化学性能优良的阴、阳离子复合掺杂新型正极材料。研究了Si、F复合掺杂来改善Li(Ni1/3Co1/3Mn1/3)O2的电化学性能,结果表明Si、F复合掺杂能显著减少Li(Ni1/3Co1/3Mn1/3)O2层状结构中的阳离子混排效应,改善材料的倍率特性,尤其是提高了大电流放电情况下的放电平台保持率。Si-F复合掺杂结合了Si增加容量和F改善循环性能的特点,Li[Ni1/3Co1/3Mn1/3]Si0.04O1.96F0.04在2.8-4.3V电压范围内获得很高的初始容量(176.9 mAh·g-1),第20个循环的容量保持率为92.1%,循环稳定性也得到了改善。由于Si-F复合掺杂效应,Li[Ni1/3Co1/3Mn1/3]Si0.04O1.96F0.04材料的电化学性能得到较大改善,交流阻抗谱图研究表明,Si、F复合掺杂能明显抑制Li(Ni1/3Co1/3Mn1/3)O2在大电流放电过程中电化学反应阻抗的增加。因此,Si-F复合掺杂是一种改进锂离子电池正极材料性能有效的方法。
其他文献
本文分别以电化学和化学氧化聚合的方法,合成聚苯胺及聚苯胺/纳米二氧化钛的复合材料,利用UV-VIS、Raman、FT-IR、TGA、XRD等测试手段对复合材料进行表征,并以罗丹明B为目标
橄榄石型的LiFePO4因具有比容量高、原料资源丰富、安全性好和环境友好等优点,被认为是最有应用潜力的新型锂离子电池正极材料。但是LiFePO4的电子电导率和锂离子传导率均较低
TiO2薄膜具有优异的光催化和光诱导超亲水特性,在光催化降解有机物、染料敏化太阳能电池以及防雾、自清洁等领域有着广阔的应用前景。提高TiO2薄膜对可见光的利用率,以及薄膜
本论文采用凝胶网络法制备出了铁酸盐复合氧化物CdFe2O4、CuFe2O4、LaFeO3和AlFeO3纳米粉体,并对材料的制备工艺、材料的结构表征、材料的气敏特性及气敏机理等作了较系统的研
经过多方面研究,人们发现LiNi1/3Co1/3Mn1/3O2的性能与LiCoO2相当,某些方面甚至还优于LiCoO2,如高温性能和安全性能,并且有向动力电池正极材料发展的趋势,因此这种比LiCoO2廉价且性能
为了更好地开发和利用西藏扎布耶盐湖卤水中资源,本文针对其卤水组成,采用等温蒸发法研究五元体系Li+,Na+,K+//SO42-,B4O72--H2O和四个四元子体系:简单四元体系Li+,Na+,K+//SO42--H2O、交
作为天然气主要成分的甲烷因含碳量低、燃烧时产生的温室气体CO2量少,而成为一种较为理想的燃料。但天然气高温燃烧(氧化)会产生有害气体NOx。天然气催化燃烧是降低NOx排放的
<正>3月7日,辽宁省电力公司组织开展了朝阳何家220 kV智能变电站SF6密度微水无线监测装置数据接入实验室联调工作。为降低现场复杂环境下联调测试的风险,保证监测装置设备顺
本文采用非晶态配合物-提拉法和水热法,摸索最佳的合成条件,制备了一系列具有可见光响应得Bi2MoO6薄膜。采用SEM、XRD、Raman、AES、DRS等检测手段研究Bi2MoO6薄膜的形貌与结
催化燃烧法具有设备简单、能耗低、不易形成NOx二次污染等优点,是消除挥发性有机化合物(VOCs)污染最有效方法之一。催化剂的性能是决定催化燃烧技术的关键问题。整体式催化剂是