论文部分内容阅读
激光测振是一种高精度的测量技术,被广泛应用于军事目标与精密民用测量中。与传统的接触式速度计等测量设备相比较,激光测振技术具有更高的精确度和灵敏度。理想的外差激光测振系统的输出可认为是调频信号,但实际系统存在寄生幅度调制和载波泄露等问题。本文将调频和调幅的激光多普勒信号称为多维度调制信号。本论文“基于FPGA的多维度调制信号数字域解调算法的研究与实现”主要研究激光多普勒信号数字解调算法和载波泄露自适应对消算法,目的是在FPGA开发板上实现激光多普勒信号实时解调的同时,能对载波泄露信号进行有效的抑制。系统仅使用乘法器和加法器IP核,所有功能模块均是自行设计实现,拥有自主知识产权,有利于不同FPGA平台移植。针对激光多普勒信号实时解调的问题,设计并优化一种易于FPGA实现的正交解调系统。输入到系统的调制信号信噪比较低,需要对数字下变频后的正交基带信号进行滤波以抑制带外噪声。为节省FPGA有限的乘法器和逻辑资源,设计串行,并行和半并行的FIR滤波器满足不同速率信号的处理需要。研究并实现一种基于向量式CORDIC算法的高速多维度解调器。不仅能实时解调出正交基带信号I,Q的幅度信息,而且通过检测象限变化的方法实现整数相位的辨向计数,以解调出相位信息。为了抑制调制信号中的载波泄露,设计了一种基于FRLS算法的自适应对消系统。FRLS算法通过对标准RLS算法的矩阵运算做近似处理,降低了 58%的计算复杂度。系统无需引入外部参考信号,采用基于旋转式CORDIC算法的数控振荡器生成两路正交的参考信号。算法在MATLAB上完成了验证,并在FPGA平台使用定点数的计算方式进行实现。基于上述方法和关键技术,在FPGA上实现多维调制信号的数字解调,并且对子模块和整体功能进行性能测试分析。实验结果表明:系统测振量程为±25mm,不加低噪放大器的条件下可对功率大于-70dBm的激光多普勒信号进行解调。为了获取较好的解调效果,测振距离应小于50m。基于FRLS算法的自适应对消系统能在0.02ms内完成载波泄露抑制,抑制比达到20dB。