论文部分内容阅读
苏云金芽孢杆菌(Bacillus thuringiensis, Bt)是土壤中广泛存在的一种革兰氏阳性细菌,在代谢过程中能够产生可生物降解的杀虫晶体蛋白,具有对昆虫致病性。小菜蛾(Plutella xylostella)是一种全球性分布的农业害虫。其中,以钙粘蛋白(CAD)、碱性磷酸酶(ALP)、氨肽酶N(APN)、以及ABC转运蛋白(ABCC2, ABCC3)为代表的中肠受体基因表达量的改变或突变与昆虫对BtCry毒素的高水平抗性相关。
CRISPR/Cas9介导的基因编辑技术被应用到很多有机体中进行遗传修饰或改造。近几年来,该技术也被应用到节肢动物中,本文首先对CRISPR/Cas9在昆虫以及非昆虫节肢动物中的应用进行了系统性的总结,并且阐述了CRISPR/Cas技术的应用前景。随后,运用CRISPR/Cas9技术分别敲除小菜蛾敏感种群中肠PxABCC2、PxABCC3、PxAPN1和PxAPN3a基因,建立的4个纯合突变种群ABCC2KO、ABCC3KO、APN1KO和APN3aKO均对BtCry1Ac原毒素产生高水平的抗性。我们的研究结果为PxABCC2、PxABCC3、PxAPN1和PxAPN3a蛋白作为小菜蛾中肠受体提供了确凿的体内功能验证,为其他受体基因的发掘提供了良好的平台,同时也为新的害虫防治策略的开发提供思路。主要研究内容如下:
(1)CRISPR/Cas系统在节肢动物中的发展现状及应用前景
规律成簇的间隔短回文序列(CRISPR)及CRISPR相关联的基因Cas9共同组成了一个有价值的基因编辑系统,可以对不同的生物有机体进行精确的遗传改造。在本文中,我们对CRISPR/Cas9技术在昆虫及其他非昆虫的节肢动物中的应用进行了系统性的归纳与总结,对于该技术在节肢动物中的发展现状提供了一个综合且公正的视角。
(2)小菜蛾CRISPR/Cas9基因编辑体系的构建
利用Cas-Designer软件分别设计小菜蛾中肠PxABCC2及PxABCC3基因的sgRNA靶标序列,并搜索小菜蛾基因组数据库、GenBank数据库以及利用Cas-OFFinder软件进行脱靶效应检测。随后,对小菜蛾敏感种群(DBM1Ac-S)的卵进行显微注射,经过一系列种系转化和突变筛选策略,成功构建了小菜蛾PxABCC2及PxABCC3基因的纯合突变种群,分别命名为ABCC2KO和ABCC3KO。
(3)ABCC2KO和ABCC3KO种群的毒力生物测定与染色体遗传互补分析
采用叶片浸渍法,对基因敲除种群ABCC2KO和ABCC3KO的幼虫进行生物学测定分析,数据结果表明,与敏感种群(DBM1Ac-S)相比,ABCC2KO和ABCC3KO种群对BtCry1Ac原毒素分别产生了724和413倍的抗性。随后,通过基因编辑种群(ABCC2KO和ABCC3KO)分别与小菜蛾敏感(DBM1Ac-S)和近等基因系抗性(NIL-R)种群进行两两种群染色体遗传互补杂交,并利用诊断剂量的Cry1Ac毒素处理这四个种群及其F1代幼虫,明确基因敲除种群对Cry1Ac毒素的抗性遗传模式。
(4)ABCC2KO和ABCC3KO种群中肠BBMV蛋白与BtCry1Ac毒素的结合分析
分别提取小菜蛾敏感种群(DBM1Ac-S)、两个基因敲除种群(ABCC2KO和ABCC3KO)和近等基因系抗性种群(NIL-R)的中肠BBMV蛋白,运用WesternBlot技术分析活化的Cry1Ac毒素与各种群BBMV蛋白的结合情况,实验结果表明,敏感种群的BBMV蛋白可以与Cry1Ac毒素结合,抗性种群的BBMV基本不与Cry1Ac毒素结合,而基因敲除种群ABCC2KO和ABCC3KO的BBMV蛋白与Cry1Ac毒素的结合能力显著下降。这表明敲除小菜蛾PxABCC2及PxABCC3基因会导致Cry1Ac毒素的结合降低,从而使得小菜蛾对Cry1Ac毒素产生高水平抗性。
(5)小菜蛾不同中肠APN基因的体外异源表达
通过比较小菜蛾Bt敏抗种群四龄幼虫的中肠转录组数据,发现所有Bt抗性种群的PxAPN1和PxAPN3a基因表达量均显著降低,而PxAPN5和PxAPN6基因的表达量则显著升高。为了确定这4个APN基因在Bt毒素作用机制中的作用,分别将PxAPN1、PxAPN3a、PxAPN5和PxAPN6基因与增强型绿色荧光蛋白(EGFP)在草地贪夜蛾细胞(Sf9)中进行融合表达,并通过WesternBlot技术验证其表达情况。免疫荧光定位检测结果表明,这4个PxAPN蛋白均定位于细胞表面,但是只有PxAPN1和PxAPN3a蛋白可以结合Cry1Ac毒素,可以明确PxAPN1和PxAPN3a是BtCry1Ac毒素的功能受体。
(6)CRISPR/Cas9介导的小菜蛾PxAPN1和PxAPN3a基因的敲除
分别设计小菜蛾PxAPN1和PxAPN3a基因的特异性sgRNA序列,并与Cas9蛋白混合,利用实验室成熟的小菜蛾CRISPR/Cas9显微操控平台,对小菜蛾敏感种群(DBM1Ac-S)的卵进行显微注射。采用优化的种系转化和突变筛选策略,成功构建了PxAPN1和PxAPN3a基因的纯合突变种群,分别命名为APN1KO和APN3aKO。随后的生物学测定结果显示,APN1KO和APN3aKO种群的幼虫对Cry1Ac原毒素的抗性水平分别为463和346倍,证明了PxAPN1和PxAPN3a蛋白作为Cry1Ac毒素的功能性受体,参与了小菜蛾对BtCry1Ac毒素的高水平抗性。
CRISPR/Cas9介导的基因编辑技术被应用到很多有机体中进行遗传修饰或改造。近几年来,该技术也被应用到节肢动物中,本文首先对CRISPR/Cas9在昆虫以及非昆虫节肢动物中的应用进行了系统性的总结,并且阐述了CRISPR/Cas技术的应用前景。随后,运用CRISPR/Cas9技术分别敲除小菜蛾敏感种群中肠PxABCC2、PxABCC3、PxAPN1和PxAPN3a基因,建立的4个纯合突变种群ABCC2KO、ABCC3KO、APN1KO和APN3aKO均对BtCry1Ac原毒素产生高水平的抗性。我们的研究结果为PxABCC2、PxABCC3、PxAPN1和PxAPN3a蛋白作为小菜蛾中肠受体提供了确凿的体内功能验证,为其他受体基因的发掘提供了良好的平台,同时也为新的害虫防治策略的开发提供思路。主要研究内容如下:
(1)CRISPR/Cas系统在节肢动物中的发展现状及应用前景
规律成簇的间隔短回文序列(CRISPR)及CRISPR相关联的基因Cas9共同组成了一个有价值的基因编辑系统,可以对不同的生物有机体进行精确的遗传改造。在本文中,我们对CRISPR/Cas9技术在昆虫及其他非昆虫的节肢动物中的应用进行了系统性的归纳与总结,对于该技术在节肢动物中的发展现状提供了一个综合且公正的视角。
(2)小菜蛾CRISPR/Cas9基因编辑体系的构建
利用Cas-Designer软件分别设计小菜蛾中肠PxABCC2及PxABCC3基因的sgRNA靶标序列,并搜索小菜蛾基因组数据库、GenBank数据库以及利用Cas-OFFinder软件进行脱靶效应检测。随后,对小菜蛾敏感种群(DBM1Ac-S)的卵进行显微注射,经过一系列种系转化和突变筛选策略,成功构建了小菜蛾PxABCC2及PxABCC3基因的纯合突变种群,分别命名为ABCC2KO和ABCC3KO。
(3)ABCC2KO和ABCC3KO种群的毒力生物测定与染色体遗传互补分析
采用叶片浸渍法,对基因敲除种群ABCC2KO和ABCC3KO的幼虫进行生物学测定分析,数据结果表明,与敏感种群(DBM1Ac-S)相比,ABCC2KO和ABCC3KO种群对BtCry1Ac原毒素分别产生了724和413倍的抗性。随后,通过基因编辑种群(ABCC2KO和ABCC3KO)分别与小菜蛾敏感(DBM1Ac-S)和近等基因系抗性(NIL-R)种群进行两两种群染色体遗传互补杂交,并利用诊断剂量的Cry1Ac毒素处理这四个种群及其F1代幼虫,明确基因敲除种群对Cry1Ac毒素的抗性遗传模式。
(4)ABCC2KO和ABCC3KO种群中肠BBMV蛋白与BtCry1Ac毒素的结合分析
分别提取小菜蛾敏感种群(DBM1Ac-S)、两个基因敲除种群(ABCC2KO和ABCC3KO)和近等基因系抗性种群(NIL-R)的中肠BBMV蛋白,运用WesternBlot技术分析活化的Cry1Ac毒素与各种群BBMV蛋白的结合情况,实验结果表明,敏感种群的BBMV蛋白可以与Cry1Ac毒素结合,抗性种群的BBMV基本不与Cry1Ac毒素结合,而基因敲除种群ABCC2KO和ABCC3KO的BBMV蛋白与Cry1Ac毒素的结合能力显著下降。这表明敲除小菜蛾PxABCC2及PxABCC3基因会导致Cry1Ac毒素的结合降低,从而使得小菜蛾对Cry1Ac毒素产生高水平抗性。
(5)小菜蛾不同中肠APN基因的体外异源表达
通过比较小菜蛾Bt敏抗种群四龄幼虫的中肠转录组数据,发现所有Bt抗性种群的PxAPN1和PxAPN3a基因表达量均显著降低,而PxAPN5和PxAPN6基因的表达量则显著升高。为了确定这4个APN基因在Bt毒素作用机制中的作用,分别将PxAPN1、PxAPN3a、PxAPN5和PxAPN6基因与增强型绿色荧光蛋白(EGFP)在草地贪夜蛾细胞(Sf9)中进行融合表达,并通过WesternBlot技术验证其表达情况。免疫荧光定位检测结果表明,这4个PxAPN蛋白均定位于细胞表面,但是只有PxAPN1和PxAPN3a蛋白可以结合Cry1Ac毒素,可以明确PxAPN1和PxAPN3a是BtCry1Ac毒素的功能受体。
(6)CRISPR/Cas9介导的小菜蛾PxAPN1和PxAPN3a基因的敲除
分别设计小菜蛾PxAPN1和PxAPN3a基因的特异性sgRNA序列,并与Cas9蛋白混合,利用实验室成熟的小菜蛾CRISPR/Cas9显微操控平台,对小菜蛾敏感种群(DBM1Ac-S)的卵进行显微注射。采用优化的种系转化和突变筛选策略,成功构建了PxAPN1和PxAPN3a基因的纯合突变种群,分别命名为APN1KO和APN3aKO。随后的生物学测定结果显示,APN1KO和APN3aKO种群的幼虫对Cry1Ac原毒素的抗性水平分别为463和346倍,证明了PxAPN1和PxAPN3a蛋白作为Cry1Ac毒素的功能性受体,参与了小菜蛾对BtCry1Ac毒素的高水平抗性。