论文部分内容阅读
液位是工业控制过程中常见的控制对象,许多工业控制过程都可以抽象成液位控制系统模型。液位控制系统可以对液位、流量和压力等参数进行测量和控制,能够很好地对工业生产过程进行模拟。为了提高液位控制系统对实验数据的处理能力,加强控制系统与先进控制算法的结合,本课题依托实验室自主研发的水箱液位实验装置,对液位控制系统可视化监控、液位控制系统模型参数辨识和液位控制算法进行研究,主要工作内容和研究成果如下:(1)根据实际需求,结合通用性仿真软件MATLAB的GUIDE工具箱,设计了一套与液位控制实验装置配套的可视化操作平台。该软件平台可以对被控对象进行实时监测与控制,动态获取控制对象的性能参数。借助MATLAB强大的数据计算和图像处理能力,按照不同的指标要求对原始实验数据进行处理,最后以曲线的形式进行实时显示,并对水箱的液位变化进行动态模拟。通过MATLAB与Access数据库联合使用,实现对实验数据的存储与管理。(2)采用阶跃响应法和最小二乘法对液位控制系统模型中的增益系数K、延时系数τ和时间响应系数T进行辨识,并根据模型评价指标对得到的辨识模型进行验证。结果表明,通过最小二乘法辨识得到的模型结构对实测数据的拟合程度较好,为液位控制对象的性能分析提供较为准确的数学模型,方便对液位控制算法的应用效果进行研究和分析。(3)为了改善模糊PID控制器在液位控制系统中的控制品质,分析研究了原始PID控制参数对模糊PID控制器控制效果的影响,利用遗传算法的全局寻优能力对原始PID控制参数进行优化,完成了遗传模糊PID控制器的设计。为了解决普通遗传算法的“早熟”问题,对遗传算法提出改进策略,并通过仿真实验对改进前后遗传算法优化的模糊PID控制器控制效果进行验证。实验结果表明,改进遗传算法较普通遗传算法具有更快的收敛速度,决策出的原始PID控制参数有效改善了被控对象的动态性能。本课题利用MATLAB GUIDE工具箱开发的液位控制系统软件界面,实现了通用仿真平台与专用控制系统的结合;对二阶液位控制系统模型参数进行辨识,为液位控制算法的仿真研究提供了数学模型。