论文部分内容阅读
本文共分四节.
第一、二节分别为本文的引言与预备知识.
第三节中,我们假设M2n+1是具有度量g的2n+1维紧致无边单连通的Riemannian流形,S2n+1为欧氏空间R2n+2中的单位球面.根据已有的结果可知:存在一个常数δ∈(0.117,0.25),使得对任意紧致单连通Riemannian流形Mn,若其截面曲率满足δ≤KM≤1,则内射半径Inj(M)≥π,因此若流形M2n+1满足截面曲率δ≤KM≤1,0
其他文献
求微分方程数值解的常用方法有以下四种:有限元法、边界元法、有限差分法和加权残值法。然而这些方法具有其特定优点的同时,也具有不足之处,比如在求解具有奇异性的微分方程方
为了研究图直积运算的消去律问题,即:G×K≌H×K当且仅当G≌H.Hammack和Liversay引入了一种称为内幂的新的图运算:一个图G的k次内幂G(k)的顶点集为V(G(k))={(x0x1…xk-1)∶xi∈V(G),i=
Mark Ainsworth(2014)曾针对单向流方程,利用高阶有限元方法构造离散波,考察它对于同速情况下的物理波的估计效果。文章不仅给出了详细的分析过程,更是得到了估计相应Floquet因
许多的生物、化学、物理系统都含有脉冲现象。如在生物系统中,人们可以通过喷洒农药减轻害虫对农作物的危害。显然,对害虫的这些干扰行为不能用连续的微分系统来描述,而脉冲微分
最优控制问题在很多领域中具有广泛的应用,因此研究最优控制问题的数值求解具有十分重要的理论意义和实际价值,由于大量最优控制问题计算规模巨大,对求解速度要求很高,因此提
本文通过构造Galerkin基的方式建立逼近解,我们研究两类非牛顿流体Young测度值解的存在性: 第一类是非牛顿单极子流体:{▽·u=0(a)u/(a)t+uk(a)u/(a)xk-▽·Τ(e(u))+▽π=
许多的实际问题和系统在某些时间区间呈现连续系统的特征而在某些时刻又呈现离散系统的特征,脉冲微分方程可以很好的将其描述。在诸多研究领域中,脉冲微分方程显示出较大的应用