论文部分内容阅读
随着计算机视觉产业的逐渐普及,人脸识别技术在日常生活中得到广泛应用,尤其在今年的防疫工作中人脸识别测温一体机发挥重要作用。尽管现有的人脸识别算法能够准确识别限制条件下的高分辨率图像,实际场景中环境和人为因素影响图像质量,导致识别准确率降低。本文研究基于深度学习的低分辨率图像人脸识别技术,解决低分辨率场景下人脸检测、图像重构、特征提取等问题,提升识别精度,主要工作如下:(1)人脸检测作为人脸识别系统的重要模块,需要从待测图像中识别出人脸边框,为后续识别算法定位人脸区域。人脸角度、光照条件等因素会影响检测准确率,本文在MTCNN模型上进行改进,包括应用最先进的非极大值抑制算法Soft-NMS、提出合成困难样本填充训练集以及人脸检测误判算法。实验证明,该算法能够准确定位低分辨率图像中的人脸区域,检测耗时较低。(2)提出基于深度学习的人脸识别算法,首先应用SRCNN重构低分辨率人脸图像,再通过VGG模型提取人脸特征,应用主成分分析(PCA)对特征进行筛选,最后由分类器完成人脸特征匹配。通过优化损失函数提升模型性能,在经过下采样的两个公开数据集FERET和LFW上评估提出的算法,识别准确率得到提高。(3)对上述提出的算法进行整合,模块化实现低分辨率人脸识别系统,收集外接摄像头拍摄真实场景下的低分辨率人脸图像来评估该系统。应用改进的MTCNN模型完成人脸检测、SRCNN模型重构低分辨率人脸图像、Res Net模型完成特征提取、分类器完成特征匹配。实验结果表明本文提出的方法能够在低分辨率真实应用场景下完成人脸识别,在准确率和效率上均有保障,具有实际应用价值。