Bi2WO6/TiO2纳米管阵列的制备及其光催化降解有机污染物性能研究

来源 :哈尔滨工业大学 | 被引量 : 0次 | 上传用户:young200909
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
工业化进程的加快造成了严峻的能源和环境问题,对人类健康产生严重的威胁。太阳光取之不尽用之不竭,具有环保、可持续等优点,得到了广泛的关注。而基于太阳光的光催化技术能够有效解决资源和能源问题。二氧化钛(TiO2)作为最早被发现的光催化材料,具有高储量、低毒性、高催化活性等优势,促进了光催化领域的发展。常见的TiO2以纳米颗粒的形式被利用,但要实现催化剂的循环利用,就要对催化剂进行固液分离。不但增加处理成本,并且可能造成二次污染。TiO2宽的禁带宽度(~3.2 e V)降低了光利用率,且较低的光生电子-空穴分离效率使催化效率降低。为解决这些问题,本论文制备了固定化的TiO2纳米管阵列(TNTAs),能够有效实现催化剂的回收再利用,并以铋基材料对其进行修饰以提高其光催化性能。具体研究内容如下:通过阳极氧化的方法,以钛网作为阳极,铂片作为阴极,成功制备出二氧化钛纳米管阵列(TNTAs)。采用X射线衍射和扫描电子显微镜进行了结构和形貌表征,计算得出TNTAs的禁带宽度为3.21 e V。综合管径、管长和管壁厚度确定了反应的最优条件为氧化电压为40 V,甘油的体积分数为80%,NH4F的质量分数是0.5wt%,氧化时间2 h,此时TNTAs的管内径约为153 nm,管长约为2μm,管壁约为20 nm。为了筛选合适的钛网规格,将制备好的10目、20目、30目和100目的TNTAs在紫外光下降解四环素,其中30目的TNTAs降解效果最优,80 min时的降解效率为83.5%。相比于粉末状的TiO2纳米材料,TNTAs可实现催化剂的全回收。利用水热法合成了不同含量Bi2WO6纳米片负载的Bi2WO6/TiO2 Ⅱ型异质结纳米材料BWO/TNTAs。扫描电镜、X射线衍射、X射线光电子能谱等表征证明了Bi2WO6纳米片的成功负载。光电化学表征证明了Bi2WO6与TNTAs的耦合,扩大了TiO2的可见光吸收范围,能够有效促进电荷分离,从而提高了光催化性能。将不同的复合物用于可见光下降解四环素,结果表明0.2 BWO/TNTAs具有最优的降解性能,180 min时的降解率可达92.2%,且5次循环后依然具有良好的稳定性和降解活性。自由基捕获实验表明·OH是四环素降解的主要活性物质。质谱结果表明四环素可能的降解机理为羟基的逐渐脱落和碳环的断开。
其他文献
传统的细菌培养监测是在开放体系中进行的,对培养条件的控制有限,难以针对单个或少量细菌进行分析。随着培养技术的进步,在单细胞水平上进行细菌培养越来越受到重视,可以更直观地分析细菌行为。巨型磷脂囊泡由磷脂分子自组装而形成,可提供一个可控的空间受限的封闭空间,通过对磷脂双层膜进行修饰,可实现内外物质交换,因此囊泡可作为细菌的微培养室。巨型磷脂囊泡的内部空间是有限的,故细菌在其中的生长行为与开放体系会有所
噬菌体是细菌宿主基因组中的一种胞内形式,它在细菌DNA中呈现出的高特异性能够帮助水平基因转移(HGT)。随着在基因组学或宏基因组学研究中发现的微生物序列呈指数增长,对能够快速,准确识别噬菌体的工具提出了巨大的需求。在这里,我们介绍DBSCAN-SWA,这是一种命令行软件工具,其主要功能是细菌基因组中原噬菌体区域的识别与注释。方法:首先,搭建、开发关于预测并注释原噬菌体区域的服务器环境、工具与算法。
多金属氧酸盐(Polyoxometalates,缩写为POMs,简称多酸)是一种多核金属氧簇,具有多样的组成与结构,在催化、医学、磁性和材料科学等领域有着广泛应用。其中,钴取代型多钨酸盐具有优异的光催化和磁学性质,但是目前合成的该类型的化合物较少,而且局限于合成单一配体桥连的钴取代型多钨酸盐。本研究在分子设计合成思想指导下,使用缺位型多钨酸盐为基本构筑单元,加入过渡金属钴形成[Co4O3(A‐α‐
水作为反应溶剂相比于传统有机溶剂具有安全、廉价、无毒、无污染等特点。水相有机反应通过以水作为反应介质,可以避免有机溶剂的使用,从而解决有机溶剂带来的毒性、易燃易爆性以及对环境的危害问题,是绿色化学的重要研究方向。喹唑啉酮类化合物是一种在天然产物、合成药物和生物成像等领域有着重要的应用的有机中间体。由于喹唑啉酮类化合物的重要价值,其合成研究一直受到重视,但传统的合成方法不仅需要苛刻的反应条件,或者使
苦咸水淡化已经成为解决目前国内外淡水资源短缺以及提供清洁安全的生活、生产用水的有效途径之一。纳滤膜以其低运行成本和优越的截留性能,确立了它在苦咸水淡化领域中的重要地位。但是传统的薄膜复合(TFC)纳滤膜在渗透性和选择性之间存在的“权衡”效应,“权衡”效应的存在限制了纳滤膜的进一步发展。此外,纳滤膜还面临浓差极化和膜污染等问题,膜污染会引起渗透通量的衰减,缩短膜的使用寿命。因此,在不牺牲选择性的前提
半导体光催化技术,是一种以半导体材料为催化剂,利用太阳光能催化降解有机污染物、光解水制备H2和催化还原CO2制备CH4等清洁能源的新兴技术,在治理环境污染和解决能源短缺这两大问题上具有非常广阔的发展前景,受到人们的广泛关注。半导体光催化材料的性能高低,受材料的光吸收能力、光生载流子分离效率、传递效率、光生载流子氧化还原能力等多种因素影响。根据文献报道,掺杂过渡金属离子引入缺陷、构建Z型异质结是提升
碳化硼(B4C)具有密度低、熔点高、超高硬度、热电性能优异以及良好的中子吸收能力等特点,被广泛应用于核工业、磨料、军工、电子和工程结构件等领域。然而,碳化硼强共价键结合的特点,使B4C陶瓷具有难烧结、难致密和断裂韧性低等缺点,严重限制了B4C陶瓷在工程领域和军工领域的应用。为了解决上述问题,本文通过引入第二相的方法改善B4C的烧结性能,向B4C基体中引入铝(Al)或碳纳米管(CNTs)来制备碳化硼
金属有机骨架(MOFs)由于其具有孔道结构可调节、组装方式多样性、网络结构丰富、结构稳定等特性,而受到广泛关注。MOFs在气相催化、气体存储与分离、质子传导、生物成像、小分子传感等领域具有广泛的应用前景。近年来,以功能特性为导向,许多具有新颖结构的MOFs不断被获得,例如以荧光检测为导向,许多具有优异发光性能的MOFs已经被开发出来,并用来检测各种对环境和人体有害的小分子化合物、硝基爆炸物、阴阳离
SiC陶瓷材料具有密度低、强度高、硬度大、耐高温、导热快等诸多优点,在航空航天等领域中具有十分广阔的应用前景。但是SiC陶瓷材料断裂韧性较低以及常压烧结难致密等缺点极大的限制其在实际中的大规模化生产应用。而相比于其他增韧方式,颗粒增韧制备工艺简单,生产成本较低,更适用于大规模工业化生产。本文通过SiC陶瓷基体中引入SiC纳米颗粒来提高常压烧结SiC陶瓷的致密性和断裂韧性,并对SiC纳米颗粒的作用机
海洋蕴藏着丰富的能源,开发海洋资源是解决人口增长和资源枯竭的必由之路。随着海洋强国战略的提出,我国开发海洋的速度不断加快。水下无人有缆机器人(Remotely Operated Vehicle,ROV)凭借其良好的机动性和深水作业能力,日渐成为海洋结构物检测维修和水下救援中的重要工具。它可以代替潜水员执行水下复杂环境的探测和维修作业,同时可以深入海洋深处进行资源观测和勘探。水下钻孔作业是海洋结构物