论文部分内容阅读
在南方离子吸附型稀土和北方矿物型稀土资源开发中,已经发展了多套浸取工艺和稀土元素的全萃取分离流程。但随着环保要求的提高,原先技术满足不了新的要求。本文主要研究氯化钙-硫酸铝分阶段浸取离子吸附型稀土,并用氢氧化稀土来皂化P507酸性有机相,与萃取分离过程减排降耗技术相耦合,进一步优化南方和北方稀土资源的提取分离工艺流程。利用氯化钙和硫酸铝以分阶段浸取的方式来实现离子吸附型稀土的绿色高效提取,以解决现有技术存在的氨氮污染、效率不高和尾矿水土流失等问题。为此,研究了不同浸取剂,不同氯化钙浓度、不同硫酸铝加入量和后续石灰水中和护尾对稀土浸出效率和尾矿zeta电位的影响。结果表明:氯化钙对稀土的浸取效果比硫酸铵、硫酸镁和硫酸铝都低。通过增加浓度可以提高效率,但当浓度大于0.256 N后,浸出效率的提升趋于平缓。而通过引入硫酸铝进行第二阶段的浸取,可以大大提高稀土浸取率,并使尾矿中黏土矿物粒子的zeta电位绝对值减小,保证尾矿稳定;当固定浸取液固比为1:1时,使用20%的硫酸铝替代部分氯化钙进行分阶段浸取,可以提升浸出效率到96%以上。氯化钙浸出液中的稀土可以用石灰来沉淀,制备结晶氢氧化稀土。所得氢氧化稀土可用于皂化P507有机相。为此,确定了相比、水相稀土浓度、串级萃取级数对有机相稀土负载浓度的影响关系。证明可以通过调节料液稀土浓度、相比以及串级萃取级数来制备稀土负载浓度在0.16-0.24mol/L范围内的有机相。皂化产出的水相循环用于溶解氢氧化稀土,并制备高浓度稀土料液,杜绝了皂化废水的产生。不溶残渣与硫酸铝浸出液合并,用N1923萃取富集稀土并与铝分离,产出的硫酸铝循环浸矿。据此,提出了新的离子吸附型稀土浸取-沉淀-萃取富集-循环利用生产工艺流程。与此同时,利用稀土磷酸盐和氟碳酸盐矿物碱法处理获得的氢氧化稀土代替原来的铵、钠、钙、镁等碱性化合物来皂化P507-煤油有机相,并制备氯化稀土料液。研究了有机相负载稀土量和皂化萃余水相pH随料液稀土浓度变化关系,以及与相比、pH值和逆流萃取级数的变化规律。结果表明:有机相稀土离子负载量随相比的减小、料液稀土离子浓度的增高和逆流萃取级数的增加而增高;在连续逆流萃取模式下,出口有机相稀土离子负载量可以方便地通过调节相比、料液稀土离子浓度和级数来控制,获得负载量在0.16-0.24mol/L之间的合格有机相。而且,通过溶料末级和萃取首级接触水相pH的调控,使进入有机相中的Th4+和Al3+量控制在1mg/L左右。据此,开发了一种包括P507-煤油有机相稀土连续皂化单元和萃余水相循环溶料单元的新工艺。该工艺克服了碱转稀土颗粒尺寸小以及其共存杂质对皂化过程的影响,既节约了原料消耗,又不产生皂化废水。