双枝模糊值函数的Mcshane积分及其推广

来源 :天津师范大学 | 被引量 : 1次 | 上传用户:lzj668
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本文共分两个部分.   第一部分:首先,在区间值函数的Mcshane积分基础上,引入了双区间值函数的Mcshane积分.其次,将模糊值函数的Mcshane积分推广为双枝模糊值函数Mcshane积分,并研究了此积分的一些基本性质.最后,结合双区间值函数和双枝模糊值函数的Mcshane积分定义,讨论了双枝模糊值函数的Mcshane积分的单调收敛定理和控制收敛定理.   第二部分:利用无穷区间上传统的δ-精细分划定义,结合模糊值函数与其截函数之间的关系,引入了无穷区间上模糊值函数的Mcshane积分.此外,针对模糊值函数给出了等度模糊Mcshane积分定义,并给出了其模糊值函数可积的等价条件.最后,定义了强模糊Mcshane积分,并在此积分意义下获得了其模糊值函数可积的充分必要条件,从而完善并丰富了模糊积分理论.
其他文献
现代控制系统正朝着大规模、复杂化的方向发展,这类系统一旦发生故障就有可能造成人员和财产的巨大损失。因此,迫切需要提高现代复杂控制系统的可靠性与安全性,容错控制则为提高这种复杂系统的可靠性开辟了一条崭新的途径。此外,有限时间稳定和有限时间有界问题引起众多学者的关注,并取得了不少理论成果。由此,关于马尔可夫跳变系统的有限时间鲁棒可靠性分析的研究具有重要的理论意义和实用价值。基于此,本文对几类马尔可夫跳
本文研究李代数模表示理论中的相关问题.主要考虑了素特征的代数闭合域上阶化Caftan型李代数不可约模的确定、Verma模的支柱簇的确定,以及秩一的基本Cartan型李代数幂零轨道的
设K是正整数的集合,一个(λ)重可分组设计是一个满足以下条件的三元组(X,g,в):X是一个有限点集;g中的元素(称为组)均是X的子集,并且所有组构成X的一个划分;B是由X的k元子集(称
对Minkowski空间(即实有限维的赋范线性空间)性质的研究在整个赋范线性空间的研究中占有相当重要的地位,一个世纪以来很多学者都对Minkowski空间的性质进行了深入的研究。本文介
产生于上世纪70年代初期的论域理论是理论计算机科学的一个重要领域,旨在为计算机函数式语言的研究奠定数学基础.序和拓扑的相互结合、相互作用是这一理论的基本特征.正是这
本文中,我们主要研究了粗几何中一些问题。粗几何研究离散度量空间的大范围几何性质。在这一领域有粗Baum-Connes猜测、粗Novikov猜测、波雷尔猜测等一系列重要猜测。Guentne
均衡问题为研究关于经济、金融、最优化等一系列问题提供了较为系统的研究框架.近年来,许多作者对该问题做了较为全面和深入的研究.受这些最新研究成果的启发,本文引入了均衡