论文部分内容阅读
变色材料的种类十分丰富,由于多金属氧酸盐在变色领域展示出广阔的发展前景,从而受到了越来越多的关注。本论文工作以多金属氧酸盐为电致变色活性组分通过交替沉积自组装技术与溶胶-凝胶技术制备变色材料。利用交替沉积自组装技术,将Dawson型钨磷酸和聚乙烯醇组装到膜中,得到了具有既可光致变色又可电致变色的双模式变色复合膜。这种双模式变色复合膜无论是在紫外光激发还是在电激发下都能产生由无色变为蓝色的现象,而且着色后的薄膜在可见光照射下,或是通过施加正电压,均可以使其褪色。复合膜的着色和褪色过程可重复多次,而几乎没有吸光度的损失。通过FT-IR谱和X-射线光电子能谱等测试手段研究复合膜的组成和结构。采用紫外-可见光谱分析该复合膜的光致变色性质。采用光谱电化学方法考察薄膜电致变色性质。通过原子力显微镜手段表征复合膜的表面形貌。采用交替沉积自组装方法,制备了含有多金属氧酸盐阴离子(P2W18)与聚紫精阳离子(PXV)的电致变色复合膜。该复合膜能产生从无色到蓝色到蓝紫色的多颜色电致变色效果,即实现了宽幅的可调变光学吸收功能。循环伏安和光谱电化学表明,这两种材料复合到膜中后,均保留了各自的电致变色特点,而且都对电致变色光反差产生贡献。此外,该复合膜修饰电极在pH=1-5.5的范围内十分稳定,其氧化还原峰位置与溶液pH呈线性关系,说明该复合膜还具有pH传感性质。基于考虑“构效关系”的分子设计思想,系统的考察了膜结构对含有多金属氧酸盐(P2W18)和聚电解质(PAH)薄膜的电致变色性质的影响。经过光谱电化学和原子力显微镜等研究显示,组分的浓度和氯化钠的浓度,对复合膜的结构产生了巨大的影响。采用较高的多金属氧酸盐和聚电解质的浓度或者聚电解质中含有较高氯化钠的浓度制备出的薄膜,具有较厚的和较紧密的膜结构。这样的结构能增加多金属氧酸盐在薄膜中的吸附量所以提高了薄膜的电致变色光反差;但是由于紧密的结构阻碍了离子在膜中的传递,因而降低了电致变色的响应速度。因此,可以通过调控复合膜的制备过程,力求实现在分子水平上调节复合膜的电致变色性质。使用溶胶-凝胶方法,制备了一种含有十二钼磷酸的气致变色硅胶传感材料。该气致变色材料的制作过程非常简单,而且这种负载了多酸的硅胶材料能够在室温下检测一些具有还原性的气体(例如:H2S和SO2)而无需任何能量消耗。这种钼磷酸-硅胶材料在与H2S气体接触后,其颜色由黄色迅速变为深绿色,该气致变色反应复合一级反应动力学。与SO2气体相比较,该材料对H2S气体具有更强的敏感度,这是由于H2S气体的还原性更强导致的。