【摘 要】
:
自从在二十世纪二十年代Toeplitz和Hausdorff首先证明了一个算子的数值域总是凸的这一事实后,有关数值域、数值域半径以及各种广义数值域及其数值域半径的研究变得非常活跃.
论文部分内容阅读
自从在二十世纪二十年代Toeplitz和Hausdorff首先证明了一个算子的数值域总是凸的这一事实后,有关数值域、数值域半径以及各种广义数值域及其数值域半径的研究变得非常活跃.这些方面的研究涉及到了基础数学及应用数学许多不同的分支,例如算子理论,C<*>-代数,Banach代数,矩阵范数,不等式,数值分析,扰动性理论,矩阵多项式,系统论和量子物理等等,并且在这些分支上面得到了广泛的应用.该文共分三章第一章Aluthge变换与<*>-Aluthge变换第二章广义Aluthge变换与广义<*>-Aluthge第三章数值域闭包的不可达点和角点.
其他文献
图G的选色数,记为x(G),定义为最小的自然数k,使得满足:对任一顶点给定k种颜色的列表,且染色时每个顶点的颜色只能从自身的颜色列表中选择时,总存在图G顶点的一个正常着色.在
该文主要讨论了在一类推广的Lipschitz条件下的倒向随机微分方程和g期望及其相关性质.这个限制使得我们无法将倒向随机微分方程的相关理论应用于一个更广的范围.该文中,我们
对于一般的无约束优化问题,信赖域方法是一种比较有效的方法.而其中信赖域半径的选取对算法的好坏有着很大的影响.最近章祥荪等在文[1]中给出了一种自适应信赖域算法,利用当
Schwarz算法可以把复杂区域分解为若干相互覆盖的子区域,在子区域上可以用快速算法求解.所谓加性Schwarz算法的发展,又可克服交替方法的串行性,更利于并行处理.该文我们给出
该文主要研究一类全纯函数族的正规性问题及亚纯函数Wronskian行列式的亏量和的Ozawa问题.正规族是单复变函数中的一个重要研究课题,国内外许多学者在这方面做了大量卓有成效
非线性泛函分析是现代分析数学的一个重要分支,因其能很好的解释自然界中的各种各样的自然现象而受到了越来越多的数学工作者的关注.其中,非线性边值问题来源于应用数学和物
破产概率是风险模型破产理论中的一个热点课题,相关风险和模型近些年来为人们所关注,但已有文献中的工作都是关于正风险和模型的.该文考虑负风险和模型,研究类之间的相关性对
二十世纪九十年代以前,由Brown运动驱动的随机微分方程理论在随机分析中占据了举足轻重的作用,并被广泛应用于经济、物理、自动化、通信等领域。近年来,随着研究的深入,人们发现
非线性方程组F(x)=0(*)在物理、力学、工程等问题中有广泛的应用背景.随着科学技术的进步以及计算工具的不断更新,它的算法研究获得进一步的深入发展.特别是并行计算技术的出