论文部分内容阅读
本论文主要围绕无卤阻燃剂的制备以及其在热塑性高分子材料中的阻燃应用展开研究,具体内容如下:以三聚氰胺与甲醛为原料,甲醇为阻聚剂,三乙醇胺为pH值调节剂,合成出三聚氰胺甲醛树脂预聚体。以过硫酸钾(KPS)为催化剂,采用原位聚合法制备了微胶囊红磷(MRP)。结果表明,KPS的加入有助于提高三聚氰胺甲醛预聚体的反应活性,使三聚氰胺甲醛树脂有效地包覆在红磷(RP)表面,缩短了反应时间;且此时制备的MRP包覆效果最佳,其氧化反应峰温为480℃,较RP原料高,可使用范围宽。采用熔融挤出法制备了多组不同配方的聚丙烯(PP)复合材料。结果表明,当PP:MRP:氢氧化镁(MH)=100(phr):15(phr):50(phr)时,复合材料的极限氧指数(LOI)为26%,垂直燃烧达到UL-94标准的V-0级,且阻燃剂的加入对复合材料的拉伸强度影响很小。以硝酸铝、硝酸镁以及氢氧化钠为原料,采用共沉淀法制备硝酸根插层的层状双氢氧化镁铝(LDH-NO3-)。X射线粉末衍射(XRD)结果表明,LDH-NO3-的纯度与搅拌时间有关,随着搅拌时间的增加,产物中的杂质峰逐渐减弱;当搅拌时间为100min时,杂质峰完全消失。在制备LDH-NO3-的基础上,选用硬脂酸钠(C18H35O2Na)改性LDH-NO3-。通过XRD表征发现,当n(C18H35O2Na)/n(Al)=1时,C18H35O2-插层效果较好,层间距由0.80nm增加到2.98 nm。热重与差热分析(TG-DTA)结果显示,以硬脂酸钠改性的LDH热稳定性良好。采用熔融挤出法制备了多组不同配方的尼龙6(PA6)复合材料。结果表明,当PA6:LDH:MRP=100(phr):9(phr):9(phr)时,复合材料的LOI为28.5%,垂直燃烧达到V-0级,且阻燃剂的使用不影响复合材料的拉伸性能。以硝酸铜、钼酸钠以及氢氧化钠为原料,采用沉淀法,在较低的温度下制备出片状一水合二钼酸三铜(CMH)。结果显示,合成的CMH为(50~100)nm宽、(100~300)nm长的片状结构材料,且结晶性好,并具有很好的耐热性,起始分解温度达到320℃左右,能满足普通塑料的加工要求。采用熔融挤出法制备了多组不同配方的乙烯-醋酸乙烯酯共聚物(EVA)复合材料。结果表明,将CMH与MRP或MH复配使用时,能起到很好的协同阻燃作用。此外,当EVA:MRP:MH=100(phr):15(phr):60(phr)时,MRP/MH/EVA复合材料的LOI能达到为39%,且垂直燃烧为V-0级。以硫酸与高锰酸钾为氧化剂,磷酸为辅助插层剂,采用化学氧化法制备出具有高膨胀体积的可膨胀石墨(EG,粒径≤30μm)。XRD与扫描电子显微镜(SEM)结果表明,当硫酸与磷酸体积比为2:1时,氧化-插层效果最佳,膨胀体积达到102 mL·g-1。X射线能谱(EDS)分析与傅立叶变换红外(FTIR)光谱分析显示,EG片层中可能插入了磷酸、硫酸以及Mn的磷酸二氢盐与硫酸盐等物质。TG-DTA结果表明,EG的起始膨胀温度应在160℃左右。采用熔融挤出法制备了多组不同配方的高密度聚乙烯(HDPE)复合材料。结果表明,当HDPE:MRP:MH:EG=100(phr):15(phr):35(phr):5(phr)时,MRP/MH/EG/HDPE复合材料的LOI为28.5%,垂直燃烧能达到V-0级,且阻燃剂的加入对复合材料的拉伸强度影响不大。以氯化镁和氢氧化钠为原料,尿素为络合剂,采用反沉淀法制备了高纯片状氢氧化镁。XRD与EDS结果表明,当氯化镁浓度达到2 mol·L-1时,就有杂质生成;使用尿素后,杂质会减少。当尿素量为30 g·L-1时,杂质完全消失,此时制备的氢氧化镁为(30~120)nm的片状材料。以硬脂酸钠为改性剂,制备出改性氢氧化镁(MH)。结果显示,当硬脂酸钠用量为5%(wt)时,改性效果最好,与改性前相比,其形貌仍为片状,且粒径变化不大。采用熔融挤出法制备了多组不同配方的尼龙66(PA66)复合材料。结果表明,改性氢氧化镁(MH)与PA66的相容性很好,且少量MRP或MH的加入不会影响PA66复合材料的拉伸强度。当PA66:MRP:MH=100(phr):10(phr):8(phr)时,MRP/MH/PA66复合材料的垂直燃烧为V-0级,LOI能达到32%。