两类非线性发展方程的初值及边值问题

来源 :哈尔滨工程大学 | 被引量 : 0次 | 上传用户:FriedaCao
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本文研究半线性抛物方程的初值问题和任意维数的神经传播型方程的初边值问题.这两类方程从表面上看是不同的两个方程,但实际上,若把半线性抛物方程两边同时对t求导,就得到神经传播型方程. 本文利用位势井族研究了半线性抛物方程的初值问题.首先,引入一族位势井和对应的集合,并给出这族位势井的性质.其次,利用这族位势井得到了解的不变集合和真空隔离现象.第三,得到了解的整体存在性与不存在性的一个门槛结果.第四,证明了解的有限时间Blow—up.最后,讨论了解的渐进性. 本文还利用Galerkin方法结合能量估计研究了任意维数的神经传播型方程初边值问题整体强解的存在性.证明了当n≤3时,对非线性项在某些条件下,问题能得到整体时间L∞强解.当n≥4时,如果f∈C,g∈C 在f,g下方有界,f,g满足一定的增长条件下,问题能得到整体时间L2强解.在n≥4时,引进了一种新的整体强解的概念.
其他文献
本文考虑的是一维带阻尼的半线性波动方程utt+αut-uxx+g(u)=f,(x,t)∈Ω×R+,带有齐次Dirichlet边界条件u(-1)=u(1)=0,和初始条件u(x,0)=u0(x),ut(x,0)=u1(x). 这里常数Ω=(-1,1),
本文主要研究自共轭微分算子边界条件的分类及其标准型。边界条件,作为微分算子定义的组成部分,对于微分算子的研究具有重要的意义。我们知道对于实参数解给出的自共轭公式,
对于恢复稀疏信号的一个有效的计算称为压缩传感问题(CS)。本文通过求解压缩传感的0l范数问题来达到精确重构原始信号的目的。将压缩传感的0l范数问题进行凸松弛,更准确地来
1985年V.Miller和N.Koblitz分别独立地提出了椭圆曲线密码体制(ECC),经过二十多年的研究,ECC已广泛应用于许多商业领域。1989年Koblitz把椭圆曲线推广到更高亏格的超椭圆曲线。
经过过去几十年的研究,聚合函数已经在许多实际问题中获得了广泛的应用,无论是在应用数学还是计算科学,或者是社会学研究方面,聚合函数都是十分重要的分析和计算工具。本文中研究
在q-级数两百多年的发展史中,Rogers-Ramanujan型恒等式始终是q-级数的重要研究课题,在q-级数的发展中占有核心地位.著名的Rogers-Ramanujan恒等式由英国数学家Rogers和印度数
本文首次研究了求解分片常系数介质问题▽(γ(x)▽u(x))=0(其中γ(x)为分片常系数)的边界积分方程组的高精度机械求积法,高精度中点常元配置法及其外推。 作者首先讨论了边
格置换及格函数由数学家P.A.MacMahon在他的著作组合分析[15]中首次提出并命名,它与许多组合对象及组合理论有密切联系.本论文主要综述了格置换与标准杨表及它们的统计量之间
学位