具有逆断面的正则半群的若干问题

来源 :华南师范大学 | 被引量 : 0次 | 上传用户:HYB1976
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
该文主要结合具有逆断面的正则半群的结构定理,对这类半群的自然偏序进行精细的描述.给出了有关自然偏序的的两个重要条件刻划,对具有逆断面的正则半群之间的同态进行了刻划,讨论了具有逆断面的正则半群的特殊同态像的条件.
其他文献
算子逼近论主要研究线性算子列的收敛性质和收敛速度等有关问题.一些著名的线性算子(如Bernstein算子,Szasz-Mirakyan算子,Gamma算子,Baskakov算子以及它们的Durrmeyer变形和
该论文利用赋范线性空间X的凸性模定义,以及凸性模的严格单调性,再借用现有结果,研究关于渐进非扩张映射T:D→D不动点的三步迭代法,该文分别讨论了三步迭代不具误差的情形以
我国证券市场自20世纪90年代出现以来发展迅速,规模不断扩大,但是各方面还不够完善,市场的风险较大。在这样一个不完善、风险高的市场中要想获得投资收益,需要借助一个强有力的工
本文研究了一类中立型双曲方程边值问题,给出了该类方程在两类边界条件下解的振动准则,极大地丰富了微分方程理论,因而具有重大的理论价值和实用价值。
该文根据数学机械化的思想,在导师张鸿庆教授"AC=BD"模式的指导下,以源于物理、力学等领域中的非线性问题所对应的非线性偏微分代数方程(组)为研究对象,研究了它们的一些问题
在这篇文章中,一方面,我们利用例外簇来考察变分不等式解的存在性.文中给出了α-例外簇的概念,并据之给出了变分不等式解的存在性定理和无例外簇的条件;而且利用另一例外簇讨
根据各种不同理论和应用的需要,Orlicz空间有各种不同形式的推广,Musielak-Orlicz空间是其中一种常见的推广形式.点态几何性质是对整个空间几何性质的细化,从宏观性质到点态
随着通信技术的发展,人们对纠错码不断地提出新的要求.低密度校验(Low-Density Parity-check,LDPC)码是一类具有稀疏校验矩阵的线性码,并且作为具有逼近Shannon限性质的纠错码,LD