基于ABE/航空煤油单滴油微爆与燃烧特性实验研究

来源 :天津大学 | 被引量 : 0次 | 上传用户:uilyz
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
能源危机和环境污染是人类在21世纪面临关于生存的决定性议题。醇类作为可再生生物质能源可以有效地缓解上述问题。甲醇和乙醇作为替代燃料已经有了广泛的应用。丁醇具有同样巨大的应用潜力,但是从其母液ABE(AcetoneButanol-Ethanol)到丁醇的发酵过程工业成本太高,所以直接将ABE作为替代燃料吸引了人们越来越多的关注和研究。该研究在单液滴层面对ABE/航空煤油混合燃料的微爆和燃烧特性进行研究。从单液滴层面进行研究避免了发动机内部复杂条件的干扰,便于对燃料的物理化学性质进行更加详细准确的结论。醇类作为替代燃料与煤油进行混合,由于多种组分的沸点不同,低沸点组分在高温环境下迅速沸腾汽化产生气泡,使整个液滴膨胀和破碎,该现象称为微爆。微爆现象在替代混合燃料燃烧过程中对液滴的雾化和燃烧过程的优化有很大的影响。该研究主要分为两部分内容,第一部分为探究各种实验条件(液滴大小,ABE与煤油比例,ABE内部乙醇和丁醇比例)对ABE/煤油单液滴微爆特性的影响。实验结果表明:(1)随着ABE占比提高,液滴微爆剧烈程度先增加后降低;(2)在同样条件下,当ABE内部乙醇比例提高时,液滴微爆剧烈程度明显提高,并且根据液滴内部气泡形成过程推断,乙醇在煤油中的低溶解度是造成这一现象的主要原因;(3)液滴大小对液滴的微爆剧烈程度影响不明显,但是微爆剧烈程度相近的两组液滴中,体积较小的液滴更容易破碎。第二部分研究内容主要为探究液滴微爆对液滴燃烧特性的影响,实验结果表明:(1)液滴微爆现象发生在液滴着火之前,由于液滴内部ABE汽化潜热较大,沸腾时吸收大量热量使液滴的点火延迟期变长;(2)微爆现象使液滴在点火延迟期通过汽化潜热的形式储存的热量集中释放出来,并且加剧了液滴的破碎,液滴微爆现象使液滴的燃烧速率明显加快。(3)提出一种液滴微爆时火焰稳定性的量化方法,并且由该方法得出,液滴微爆会使液滴火焰产生明显的波动,从一定程度上说明液滴燃烧稳定性下降。
其他文献
本文以一台排量650m L的低压空气辅助直喷单缸试验机作为试验平台,进行了冷起动试验研究。发动机冷起动动态过程包括两个阶段,首先是着火阶段,即从开始喷油点火到形成首循环燃烧的过程,围绕温度低、雾化差,难以形成火核的问题进行了冷起动性能试验研究,提高火核形成能力;然后是暖机阶段,围绕因缸温低、进气不稳定而产生异常燃烧的问题,研究了首循环之后的燃烧特性,提高做功能力。对这两个阶段进行改善,全面优化发动
空中目标位姿定位是测量技术领域的重要研究方向之一,其中基于光电探测原理的测量系统具有作用距离远、实时性好、精度高、抗干扰能力强等优点,应用前景广泛。本文针对空中目标位姿定位的实际需求,基于光电扫描测角原理和激光雷达测距原理,提出了一种新型机载扫描定位系统的方案,并设计了相应的光学系统。首先制定了系统的总体方案。利用垂直共轴双路激光扫描实现方位角和俯仰角的测量,同时利用飞行时间探测法探测目标的距离。
动量轮是卫星姿态控制系统中的重要执行机构。磁流体动量轮具有寿命长、精度高、重量轻、体积小等优点。研究磁流体动量轮驱动系统,对卫星的主动姿态控制技术具有重要意义。本文介绍了磁流体动量轮的工作原理,建立了电磁驱动的流体速度分布公式和动量轮驱动模型,设计了动量轮驱动电路并对其性能进行了实验测试,最后对驱动模型进行了实验验证。具体研究工作如下:(1)根据磁流体动力学原理,研究了电磁场作用下磁流体在矩形截面
四旋翼无人机由于体积小、机动性强、易于维护等优点,拥有极大的应用领域和广阔的发展前景,一直是国内外研究的重点。然而,四旋翼无人机是一个典型的受非线性、强耦合及不确定等综合影响的欠驱动系统,其强鲁棒和高可靠的控制器设计面临挑战。本文以提高四旋翼无人机的姿态控制性能为目的,重点对基于超螺旋滑模的姿态控制方法进行研究,主要研究内容包括:首先,考虑不确定干扰边界未知对四旋翼无人机姿态控制性能的影响,提出了
点燃式活塞航空煤油发动机,由于其具有体积小、重量轻、升功率高、结构简单、维修方便等优点,被人们广泛应用于军事及民用领域,但是煤油运动粘度高、挥发性差,难以点燃的特性,一直限制着航空发动机的动力性、经济性的提升。故本文围绕这一关键问题,对点燃式活塞航空发动机燃烧室进行优化设计并研究分析其燃烧特性,探寻改善航空煤油发动机性能的结构方案,对于工程应用具有重要的参考价值。本文基于一台点燃式低压空气辅助直喷
热障涂层(TBCs)是航空发动机涡轮叶片的核心技术之一。近年来,一种主要成分为CaO-MgO-Al2O3-SiO2(CMAS)的环境沉积物腐蚀成为热障涂层失效的重要原因,引起极大关注。本文研究了CMAS的自结晶行为,提出了一种MAX相的Ti2AlC作为热障涂层的CMAS防护层材料,研究了Ti2AlC与CMAS的高温反应行为及反应结晶产物特征,阐明了Ti2AlC促使CMAS反应结晶机理,明确了其阻熔
无人机具有灵活机动,安全可靠,不会造成人员伤亡的特点,并且能够适应各种恶劣极端的环境,完成复杂困难的任务。然而,随着人们对于任务的要求逐渐提高,任务完成过程不断复杂,单架无人机很难满足要求,因此无人机编队控制成为了无人机协同控制领域的热点问题。但是,随着无人机编队的规模不断扩大,通信以及机载控制器计算负担不断加大,导致系统实时性下降。而且,在实际飞行过程中,无人机间的通信可能出现数据丢失问题,导致
随着各国航天事业的发展,空间碎片的数量持续增长,对在轨航天器的安全运行造成严重威胁。因此,对航天器与空间碎片碰撞进行感知与定位尤为重要。为使航天器具有足够的机械强度,同时保证轻量化,通常在其舱壁外表面设置有加强筋结构。碰撞信号在加筋板中的传播特性十分复杂,尽管现有技术能够对平板中的碰撞源进行准确定位,但对于具有高加强筋的加筋板中的碰撞源定位仍缺乏有效方案。因此,本文针对航天器密封舱壁板的碰撞感知与
随着电子技术的快速发展和控制理论的丰富和完善,无人机逐渐融入到人们的生活之中。与有人机相比,小型固定翼无人机具有机动性好、体积小和价格低等优点,在军用和民用方面的使用率越来越高,如战场侦察、监视、测量测绘、交通管理等。固定翼无人机的工作过程可以分为三个阶段:发射阶段、任务飞行、回收阶段。其中,固定翼无人机在空中航线飞行的自主飞行技术相对来说已经比较成熟,而自主起降过程比较复杂,又容易受到阵风、侧风
近年来,四旋翼无人机因其稳定性高、操控方便以及可垂直起降等优势被广泛应用于各个领域。由于四旋翼无人机本身就具有欠驱动性,而悬挂负载的引入使得整个系统的控制难度进一步加大。一方面,四旋翼无人机悬挂空运系统包含八个自由度:四旋翼无人机的三个平动自由度、三个转动自由度以及负载摆动运动的两个自由度。但整个系统只有四个独立的控制输入,负载的运动只能通过四旋翼无人机的运动进行调节,这使得整个系统的欠驱动特性与