拓扑节线半金属ZrSiS的低能元激发研究

来源 :中国科学院大学(中国科学院物理研究所) | 被引量 : 0次 | 上传用户:aajilin
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
元激发是凝聚态物理中十分重要的概念,不管是单粒子激发还是集体激发,都对材料的物理性质具有举足轻重的影响。近年来,凝聚态物理在材料的拓扑物性研究上获得了巨大的进步,以拓扑绝缘体和拓扑半金属为代表的拓扑材料不仅极大地开拓了人们对基础固体物理的认知,也带来了丰富的应用前景。对拓扑材料元激发的研究是理解拓扑物性的关键。本文聚焦于拓扑材料元激发的探索,以典型的节线半金属ZrSiS为例,一方面探索了其独特表面态与表面声子的相互作用,另一方面详细研究了与其拓扑能带相关的独特等离激元物性。本文将为节线形拓扑半金属在低维电子学与等离激元光子学中的应用提供研究基础。在第一部分中,我们利用高分辨电子能量损失谱首次获得了覆盖ZrSiS第一布里渊区高对称方向的声子色散谱,发现了其中一支光学模式的异常软化现象。我们建立了电子-声子相互作用模型,分析发现该光学模式的软化是由于表面声子与ZrSiS表面特有的“漂浮”表面态相互作用导致的Kohn异常。在此基础上,我们建立了表面电子-声子相互作用的详细物理图像,通过对声子自能虚部的拟合,我们得出了这支软化声子的平均电声子耦合常数为λ≈0.15。这一结果将有助于理解拓扑节线形半金属的低维输运性质。在第二部分中,我们首次测量发现了 ZrSiS中的三支能量在0.1-1.5 eV之间的等离激元激发。在布里渊区中心处,这三支等离激元的能量分别为0.20、0.50、0.90 eV左右,处于近-中红外频率区间。与理论上对于具有理想圆形节线的拓扑半金属的预测不同,我们发现三支等离激元都呈现出各向同性的色散关系。变温实验表明这三支等离激元色散都呈现出良好的温度稳定性。通过对ZrSiS表面电子态的分析,结合第一性原理电子能带计算和无规相近似框架下对电子损失函数的计算,我们分析出了这三支等离激元对应的电子态来源,发现这三支等离激元都与体系的拓扑电子能带相关,是拓扑电子态等离激元的直接体现。此外,本论文还尝试了磁性氦原子散射谱仪的搭建,愿景是在实现常规氦原子探测材料表面原子起伏与表面声子的基础之上,进一步地探测到磁性材料的表面磁有序结构和磁振子激发。这一部分中主要介绍了磁性氦原子散射谱仪的机械结构设计与电子学控制系统的设计搭建,前者包括单色化氦原子束产生、激发与探测装置,后者包括对于激发态氦原子进行角分辨能量探测的电路与控制模块的设计与实现、软件开发与调试等。这些工作为磁性氦原子散射谱仪的实现提供了技术基础。
其他文献
超导量子计算基于以约瑟夫森结为核心的超导量子电路和量子器件,相比于其它形式的量子计算方案,具有损耗低,量子态的制备、调控和读取灵活,以及容易集成化等诸多优点,目前被认为是最有可能实现全固态量子计算的方案之一。本论文对超导位相量子比特、n SQUID量子比特、耦合Xmon型量子比特以及用于量子态单发非破坏读出的约瑟夫森参量放大器(JPA)的多层膜制备工艺、参数优化与物理性质等进行了系统的研究,研究工
哈特利-福克方法和密度泛函理论是量子化学和凝聚态物理中最为常用的两种计算方法。因为它们都是从量子力学的基本理论出发,并且方法中很少使用经验参数,所以也被称为第一性原理计算方法。第一性原理计算方法可以帮助我们从微观层面定量计算材料的各种物理性质,这种方式极大地加速了我们对奇异材料物理性质的探索。近些年来拓扑绝缘体和外尔半金属方法的研究进展,很大程度上依赖于第一性原理计算与实验的结合。密度泛函理论是我
光与物质的相互作用不仅是很多物理现象的核心,其在现代科学技术中也起着至关重要的作用,这其中包括但不限于现代光谱学、激光、X射线源、发光二极管、光电二极管、太阳能电池、量子信息处理。本论文主要基于二维层状材料体系,利用光学和电学表征手段,研究二维材料中光与物质相互作用带来的独特物理性质。具体研究内容如下:1.利用拉曼光谱研究石墨烯中的非绝热电声子耦合。利用“pick up”干法转移的方法制备了超薄六
作为凝聚态物理的一个重要分支,超导自1911年被发现以来,以其独特的物理性质和潜在的实用价值一直受到研究人员的广泛关注。从金属单质到合金到化合物,从常规超导到非常规超导,超导研究取得了一系列重大的研究成果,同时也面临着许多机遇和挑战。近年来,拓扑非平庸材料因其独特的电子结构和在量子计算领域良好的应用前景而成为材料科学及凝聚态物理领域的研究热点,它的体态具有非零的拓扑不变量,在体态和真空相连接的边界
自从凝聚态领域引入拓扑概念以来,物理学家们对新奇拓扑物态的探索和研究已经蓬勃发展了几十年,发现了拓扑绝缘体、拓扑半金属和拓扑超导体等具有非平庸能带结构的拓扑材料,不断深入和丰富着拓扑物态的理论研究和实验证明,使固体能带理论得到进一步发展。同时拓扑系统中蕴涵的量子自旋霍尔效应和马约拉纳零能模等奇异量子态具有巨大的潜在应用价值,能够推动未来科技革命的进步,这些诱人的前景促使人们在各种体系中持续探求拓扑
磁性纳米材料的磁动力学研究是磁学的一个重要方向。在基于磁矩翻转的自旋电子学器件中,磁弛豫过程决定了器件中磁矩翻转的快慢和临界驱动电流的大小。同时,自旋电子学的发展使得基于电子自旋的信息处理和存储器件成为可能,其中关键技术之一是自旋流的产生和探测。而这关键技术在材料学中涉及到自旋流和电荷流之间的相互转换。理解自旋流和电荷流之间的相互转换,对于探索基于纯自旋流的新型低功耗器件应用而言是至关重要的。本论
电荷与自旋掺杂的“捆绑”是传统稀磁半导体(Diluted Magnetic Semiconductor,DMS)的固有缺陷。为了克服这一难题,本论文研制了一系列电荷与自旋掺杂机制分离的新型稀磁半导体,并在这些材料中通过引入化学压力有效的增强了铁磁关联和居里温度;揭示了材料中铁磁关联范围与自旋浓度之间的关系;在自旋玻璃态中发现了-94%以上的巨大负磁阻等新奇物性。具体内容包括:一、稀磁半导体的物理压
由于电子间库仑相互作用的存在,关联材料含有十分丰富的多体物理效应和量子物态,如高温超导、莫特绝缘体、重费米子和非费米液体等,是凝聚态物理学重要的研究对象。此外,一些关联电子材料还表现出拓扑物态。多体效应和拓扑物态的结合演生出了一些有趣的量子材料体系,比如近藤拓扑绝缘体等。稀土基金属间化合物由于其4f电子与传导电子之间的杂化作用而表现出强关联效应,展现出上述诸多奇异物性,是一类传统的关联量子材料。以
近年来,随着信息技术的高速发展,提高信息传递速度和信息处理的效率变得尤为重要。新型信息器件逐渐成为了人们研究的热点,特别是具有非易失性、高读写速率、高存储密度、低能耗、价格低廉和低电压特点的通用型存储器。此外,人脑具有超高密度、低能耗、并行模式、抗干扰能力、自适应学习能力和高容错能力的优点,研究类人脑神经突触器件是提高计算效率的新途径。近期,随着基于磁电耦合效应的电耦器(第四种基本电路元器件)的构
在电子元件尺寸越发趋近其理论极限的今天,二维材料作为开发新一代电子学、光电子学、自旋电子学器件的重要载体,备受全世界研究者的关注。为了最大化二维材料的应用潜力,需要在二维体系中发掘出更多新的物性。而基于结构决定性质的原则,这就要求人们发现更多调控二维材料结构的手段。因此,如何在二维系统中构筑新的结构,就成为了一个值得研究的问题。本论文主要工作集中于对两种二维材料体系——石墨表面上的单层二硒化钒和P